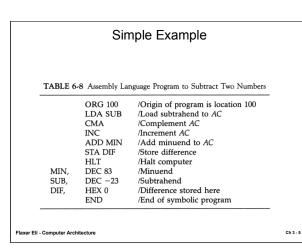
Location	Instruction code	
0	0010 0000 0000 0100	
1	0001 0000 0000 0101	
10	$0011 \ 0000 \ 0000 \ 0110$	
11	0111 0000 0000 0001	
100	$0000 \ 0000 \ 0101 \ 0011$	
101	$1111 \ 1111 \ 1110 \ 1001$	
110	$0000 \ 0000 \ 0000 \ 0000$	
10 11 100 101	0011 0000 0000 0110 0111 0000 0000 0001 0000 0000 0101 0011 1111 1111 1110 1001	

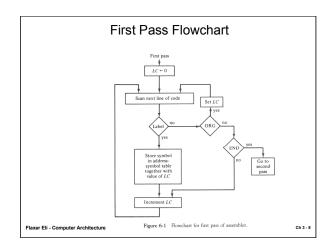

TABLE 6-3	Hexadecimal	Program to Add	Two Numbers	
:	Location	Instruction	=	
	000	2004	_	
	001	1005		
	002	3006		
	003	7001		
	004	0053		
	005	FFE9		
	006	0000		
Still very di	fficult to und	erstand !	-	

Flaxer Eli - Computer Architecture

0	- P - 1	(1)
Symb	olic Langi	uage (Mnemonic)
TABLE	6-4 Program wi	th Symbolic Operation Codes
Location	Instruction	Comments
000	LDA 004	Load first operand into AC
001	ADD 005	Add second operand to AC
002	STA 006	Store sum in location 006
003	HLT	Halt computer
004	0053	First operand
005	FFE9	Second operand (negative)
006	0000	Store sum here

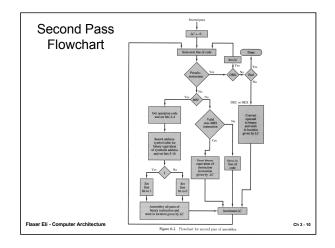
Ch 3 - 3

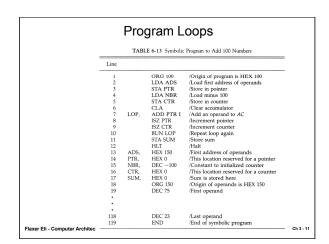
	0-5 Assembly	Language Program to Add Two Numbers
	ORG 0	/Origin of program is location 0
	LDA A	/Load operand from location A
	ADD B	/Add operand from location B
	STA C	/Store sum in location C
	HLT	/Halt computer
А,		1
,	DEC -23	
С,	DEC 0	/Sum stored in location C
	END	/End of symbolic program

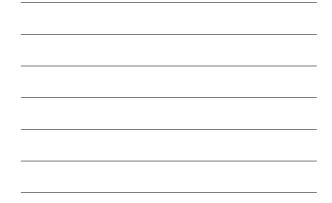


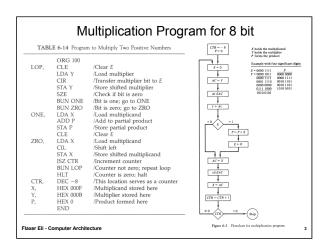
Т	Translating to Binary				
	TABLE 6-9 L	isting of Trar	nslated Prog	gram of Table 6-8	
	Hexadeci	mal code			
	Location	Content	Symbo	olic program	
				ORG 100	
	100	2107		LDA SUB	
	101	7200		CMA	
	102	7020		INC	
	103	1106		ADD MIN	
	104	3108		STA DIF	
	105	7001		HLT	
	106	0053	MIN,		
	107	FFE9	SUB,		
	108	0000	DIF,	HEX 0	
				END	

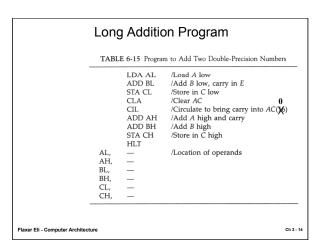



Re	Representation of Sybolic Program in Memory							
TA	BLE 6-11 Co	omputer Rep	esentation of the	Line of Code: PL3, LDA SUB	I			
-	Memory word	Symbol	Hexadecimal code	Binary representation				
-	1	ΡL	50 4C	0101 0000 0100 1100				
	2	3,	33 2C	0011 0011 0010 1100				
	3	LD	4C 44	0100 1100 0100 0100				
	4	Α	41 20	0100 0001 0010 0000				
	5	SU	53 55	0101 0011 0101 0101				
	6	В	42 20	0100 0010 0010 0000				
	7	I CR	49 0D	0100 1001 0000 1101				
-								
Flaxer Eli -	Computer Archite	cture			Ch 3 -			




TABLE	E 6-12 Addres	ss Symbol Table for	r Program in Table 6-8
Memory word	Symbol or (LC)*	Hexadecimal code	Binary representatio
1	ΜI	4D 49	0100 1101 0100 100
2	Ν,	4E 2C	0100 1110 0010 110
3	(LC)	01 06	0000 0001 0000 011
4	ŚÚ	53 55	0101 0011 0101 010
5	В,	42 2C	0100 0010 0010 110
6	(LC)	01 07	0000 0001 0000 011
7	DÍ	44 49	0100 0100 0100 100
8	F,	46 2C	0100 0110 0010 110
9	(LC)	01 08	0000 0001 0000 100





М	ultiplication A	Igorithm	
	X holds the mult Y holds the mult P forms the proc	tiplier duct	
	Example with fo	ur significant digits	
	<i>X</i> = 0000 11111	Р	
	$Y = 0000 \ 1011$	0000 0000	
	0000 1111	0000 1111	
	0001 1110	0010 1101	
	0000 0000	0010 1101	
	0111 1000	1010 0101	
	1010 0101		
Flaxer Eli - Computer Architecture			Ch 3 - 12

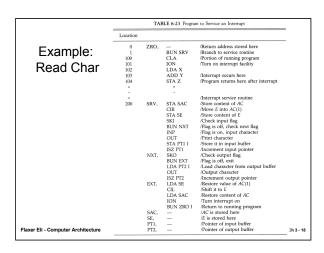

	TAB	LE 6-16 P	rogram to Demor	nstrate the Use of Subroutines
L	ocation			
			ORG 100	/Main program
	100		LDA X	/Load X
	101		BSA SH4	/Branch to subroutine
	102		STA X	/Store shifted number
	103		LDA Y	/Load Y
	104		BSA SH4	/Branch to subroutine again
	105		STA Y	/Store shifted number
	106		HLT	
	107	Х,	HEX 1234	
	108	Υ,	HEX 4321	
				/Subroutine to shift left 4 times
	109	SH4,	HEX 0	/Store return address here
	10A		CIL	/Circulate left once
	10B		CIL	
	10C		CIL	
	10D		CIL	/Circulate left fourth time
	10E		AND MSK	/Set AC(13-16) to zero
	10F		BUN SH4 I	/Return to main program
	110	MSK,	HEX FFF0 END	/Mask operand

	TABLE 6-	17 Program to I	Demonstrate Parameter Linkage
Locati	on		
		ORG 200	
200		LDA X	/Load first operand into AC
201		BSA OR	/Branch to subroutine OR
202		HEX 3AF6	/Second operand stored here
203		STA Y	/Subroutine returns here
204		HLT	
205	Х,	HEX 7B95	/First operand stored here
206	Υ,	HEX 0	/Result stored here
207	OR,	HEX 0	/Subroutine OR
208		CMA	/Complement first operand
209		STA TMP	/Store in temporary location
20A		LDA OR I	/Load second operand
20B		CMA	/Complement second operand
20C		AND TMP	/AND complemented first operand
20D		CMA	/Complement again to get OR
20E 20F		ISZ OR BUN OR I	/Increment return address
20F 210	73 (7)	BUN OK I HEX 0	/Return to main program
210	TMP,	HEX 0 END	/Temporary storage

Pointer Pa	aram	eter Ex	ample: Move Bl	ock
	Т	ABLE 6-18 Subro	utine to Move a Block of Data	
		BSA MVE HEX 100 HEX 200 DEC -16 HLT	/Main program /Branch to subroutine /First address of source data /First address of destination data /Number of items to move	
	MVE,	HEX 0 LDA MVE I STA PT1 ISZ MVE LDA MVE I STA PT2 ISZ MVE LDA MVE I STA CTR	/Subroutine MVE /Bring address of source /Store in first pointer /Increment return address /Bring address of destination /Store in second pointer /Increment return address /Bring number of items /Store in counter	
	LOP, PT1.	ISZ MVE LDA PT1 I STA PT2 I ISZ PT1 ISZ PT2 ISZ CTR BUN LOP BUN MVE I	Increment return address Load source item /Store in destination /Increment source pointer /Increment destination pointer /Increment counter /Repeat 16 times /Return to main program	
	PT2,	_		
Flaxer Eli - Computer Architecture	CTR,	_		Ch 3 - 17

