Chapter 4

Boolean Algebra

Computer Application

Flaxer Eli - ComputerAppl

Chapter Outline

- Boolean Algebra (Switching Algebra)
- Definitions
- Basic Axioms
- Basic Theorems
- Representation of Boolean Functions

Definitions

- Boolean Algebra : An algebraic structure defined with a set of elements $B=\{\mathbf{0}, \mathbf{1}\}$, a set of binary operators (,.,$+ \mathfrak{\prime}$), and a number of unproved axioms.
- Symbolic Variables such as $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ represent the elements. A variable can take the value " 0 " or " 1 " which corresponds to the condition of a logic signal.
- Algebraic Operators :
- Addition operator (+)
- Multiplication operator (.)
- Complement operator (')

History

In 1854 George Boole introduced systematic treatment of logic and developed for this purpose an algebraic system now called Boolean Algebra.

- In 1938 C. E. Shannon introduced a two-valued Boolean Algebra called Switching Algebra, in which he demonstrated that this algebra can represented by electrical switching.

Boolean Algebra Definitions

- Boolean (Switching) Algebra structure consist:
- Set of elements (constant) $B=\{0,1\}$.
- Binary operation $\mathbf{O}=\{+$, . $\}$.
- Unary operation \{‘\}.
- The following axiom:

Flaxer Eli - ComputerAppl
Ch4-4

Theorems - Single Variable

- Null elements :
$\left(\mathrm{T}_{1}\right) \mathbf{X}+\mathbf{0}=\mathbf{X}$
- Identity elements :
$\left(\mathrm{T}_{2}\right) \mathbf{X}+\mathbf{1}=\mathbf{1}$
- Idempotency :
$\left(T_{3}\right) \mathbf{X}+\mathbf{X}=\mathbf{X}$
$\left(\mathrm{T}_{1}{ }^{\prime}\right) \mathbf{X} . \mathbf{1}=\mathbf{X}$
- Involution :
$\left(\mathrm{T}_{4}\right)\left(\mathrm{X}^{\prime}\right)^{\prime}=\mathbf{X}$
- Complements :
$\left(T_{5}\right) X+X^{\prime}=\mathbf{1}$
$\left(T_{5}^{\prime}\right) X \cdot X^{\prime}=0$
- Induction Proof :

Show that the theorems are true for both $\mathrm{X}=0$ and $\mathrm{X}=1$
Flaxer Eli - ComputerAppl

Induction Proof

- $\mathrm{T}_{3}: \mathbf{X}+\mathbf{X}=\mathbf{X}$

X $\quad \mathrm{X} \quad \mathrm{X}+\mathrm{X}$
$0 \quad 0 \quad 0$
111

- $\mathrm{T}_{5}: \mathrm{X}+\mathrm{X}^{\prime}=\mathbf{1}$

X $\quad X^{\prime} \quad X+X$ '
$\begin{array}{lll}0 & 1 & 1\end{array}$

$$
\begin{array}{lll}
1 & 0 & 1
\end{array}
$$

Flaxer Eli - ComputerAppl

Theorems - Multiple Variables

- Commutativity

$$
\left(\mathrm{T}_{6}\right) \mathbf{X}+\mathbf{Y}=\mathbf{Y}+\mathbf{X} \quad\left(\mathrm{T}_{6}{ }^{\prime}\right) \mathbf{X} \cdot \mathbf{Y}=\mathbf{Y} \cdot \mathbf{X}
$$

- The inputs of AND and OR gates can be interchanged.
- Associativiy :
$\left.\left(\mathrm{T}_{7}\right) \mathbf{(X + Y) + Z}=\mathbf{X}+\mathbf{(Y + Z)} \quad\left(\mathrm{T}_{7}{ }^{\prime}\right) \mathbf{(X . Y}\right) . \mathbf{Z}=\mathbf{X} .(\mathbf{Y} . \mathbf{Z})$
- The order of the input variables could be rearranged.
- Distributivity :

- Multiplication distributes over addition
- Addition distributes over multiplication !!!

DeMorgan

- DeMorgans Theorems
$\left(\mathrm{T}_{13}\right)\left(\mathbf{X}_{1} \cdot \mathbf{X}_{2}, \ldots . \mathrm{X}_{\mathrm{n}}\right)^{\prime}=\mathbf{X}_{1}{ }^{\prime}+\mathbf{X}_{2}{ }^{\prime}+\ldots+X_{\mathrm{n}}{ }^{\prime}$
$\left(\mathrm{T}_{13}{ }^{\prime}\right)\left(\mathbf{X}_{1}+\mathbf{X}_{2}+\ldots+\mathbf{X}_{\mathrm{n}}\right)^{\prime}=\mathbf{X}_{1}{ }^{\prime} \cdot \mathbf{X}_{2}{ }^{\prime} \cdot \ldots . \mathbf{X}_{\mathrm{n}}{ }^{\prime}$

Example : two-variable case

X 1	-
X 2	-
	$\mathrm{X} 1+\mathrm{X} 2)^{\prime} \equiv$

X 2
 (X1'.X2')

Theorems - Multiple Variables

- Covering :
$\left(\mathrm{T}_{9}\right) \mathbf{X}+\mathbf{X} . \mathbf{Y}=\mathbf{X}$
$\left(\mathbf{T}_{9}{ }^{\prime}\right) \mathbf{X} .(\mathbf{X}+\mathbf{Y})=\mathbf{X}$
- Proof:
$-\mathrm{T}_{9}: X+X . Y=X .1+X . Y \quad$ (theorem $\mathrm{T}_{1}{ }^{\prime}$)
$=\mathrm{X} .(1+\mathrm{Y}) \quad$ (theorem T_{8} - Distributivity)
$=\mathrm{X} .1$ (theorem T_{2})
$=\mathrm{X} \quad$ (theorem $\mathrm{T}_{1}{ }^{\prime}$)
$-\mathrm{T}_{9}{ }^{\prime}: \mathrm{X} .(\mathrm{X}+\mathrm{Y})=(\mathrm{X}+0) .(\mathrm{X}+\mathrm{Y})\left(\right.$ theorem $\left.\mathrm{T}_{1}\right)$
$=\mathrm{X}+(0 . \mathrm{Y})$ (theorem $\mathrm{T}_{8}{ }^{\prime}$ - Distributivity)
$=\mathrm{X}+0 \quad$ (theorem $\mathrm{T}_{2}{ }^{\prime}$)
$=\mathrm{X} \quad\left(\right.$ theorem $\left.\mathrm{T}_{1}\right)$

Duality

- Duality : Every Boolean expression remains valid if the (AND, OR) operators and $\{\mathbf{0 , 1} \mathbf{1}$ elements are interchanged.
- Mathematical definition : if F is a Boolean Function then FD, the dual, function is :
$\bullet F D\left(X_{1}, X_{2}, \ldots, X_{n},+, ., \prime\right)$ def as $F\left(X_{1}, X_{2}, \ldots, X_{n}, .,+,{ }^{\prime}\right)$
- $\mathrm{FD} \neq \mathrm{F}$
- Example:
- $\mathrm{F}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\mathrm{X}_{1}+\mathrm{X}_{2} \cdot \mathrm{X}_{3}$ $\mathrm{FD}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\mathrm{X}_{1} \cdot\left(\mathrm{X}_{2}+\mathrm{X}_{3}\right)$

Exercise : Demorgan/Duality

- $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}$

Find: F', FD

- $\mathrm{F}^{\prime}=\left[\mathrm{AB}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}\right]^{\prime}=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}\right)$
$F D=(A+B)\left(A+B^{\prime}+C\right)\left(B+C^{\prime}\right)$
$F D\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=\left(A^{\prime}+B\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(B^{\prime}+C\right)$
$F D^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=\left[\left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(B^{\prime}+C\right)\right]^{\prime}$
$=A B+A B{ }^{\prime} C+B C^{\prime}$

