

Definitions

- ◆ Boolean Algebra : An algebraic structure defined with a set of elements B={0,1}, a set of binary operators (+,.,`), and a number of unproved axioms.
- ◆ Symbolic Variables such as X, Y, Z represent the elements. A variable can take the value "0" or "1" which corresponds to the condition of a logic signal.

◆ Algebraic Operators :

- Addition operator (+)
- Multiplication operator (.)
- Complement operator (')

Flaxer Eli - ComputerAppl

Ch4 - 5

 $(A_5) 0.1 = 1.0 = 0$ $(A_5') 1 + 0 = 0 + 1 = 1$

```
axer Eli - ComputerAppl
```

Ch4 - 6

Theorems - Single Variable		
• Null elements : (T_1) $X + 0 = X$	$(T_1') \mathbf{X} \cdot 1 = \mathbf{X}$	
 ◆ Identity elements : (T₂) X + 1 = 1 	$(T_2') X \cdot 0 = 0$	
• Idempotency : (T_3) X + X = X	$(T_{3}') X \cdot X = X$	
• Involution : $(T_4) (X')' = X$		
 ♦ Complements : (T₅) X + X' = 1 	$(T_5') X \cdot X' = 0$	
◆ Induction Proof : Show that the theorems are true for both X=0 and X=1		
Flaxer Eli - ComputerAppl		Ch4

Exercise : Demorgan/Duality

- ♦ F(A,B,C) = AB+AB'C+BC'
 Find : F', FD
- ◆ F' = [AB+AB'C+BC']'= (A'+B')(A'+B+C')(B'+C)
 FD = (A+B)(A+B'+C)(B+C')
 FD(A',B',C') = (A'+B)(A'+B+C')(B'+C)
 FD'(A',B',C') = [(A'+B')(A'+B+C')(B'+C)]'
 = AB+AB'C+BC'

Ch4 - 13

Flaxer Eli - ComputerAppl