
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Logic Variables

$\qquad$

- Logical variable may assume one or other of only tow possible $\qquad$ values \{False, True\}.
- The values are expressed by declarative statements, for example:
- "the light is blue". $\qquad$
- "the value of $x$ is 7 ".
- The two possible values expressed by the declarative statements must be such that, on the basic of human reason, i.e., on the basic of logic, they are mutually exclusive.
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Logic Functions

- Logical function defined by truth tables.
- The number of variable can be 1,2 ,
- For single logical variable there has 4 posible function:

| $\quad \mathrm{x} \mid \mathrm{F}(\mathrm{x})$ | $\mathrm{x} \mid \mathrm{F}(\mathrm{x})$ | $\mathrm{x} \mid \mathrm{F}(\mathrm{x})$ | $\mathrm{x} \mid \mathrm{F}(\mathrm{x})$ |  |
| :--- | :--- | :--- | :--- | :--- |
| F | F | F | T | F |
| F | F | T |  |  |
| T | T | T | F | T |
| F | F | T | T |  |



## Basic Logic Gates

- AND gate

- OR gate

- NOT gate or inverter
- Output $\mathrm{Z}=\mathrm{T}$ only when input A is F

- Simple alone, but combine a few million gates properly and you have a computer!

Basic logic Gates $\qquad$


NOT Gate


| X | Z |
| :---: | :---: |
| F | T |
| T | F |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- NAND Gate
NOR Gate
P-
P-T

| X | Y | Z |
| :---: | :---: | :---: |
| F | F | T |
| F | T | T |
| T | F | T |
| T | T | F |



Not Basic logic Gates

- XOR Gate

NXOR Gate
P


Symbolic Logic


