

Logic Variables

- Logical variable may assume one or other of only *tow* possible values {False, True}.
- The values are expressed by declarative statements, for example:
 - "the light is blue".
 - "the value of x is 7".
- The two possible values expressed by the declarative statements must be such that, on the basic of human reason, i.e., on the basic of logic, they are *mutually exclusive*.

Logic Functions

- Logical function defined by truth tables.
- The number of variable can be 1, 2, ...
- For single logical variable there has 4 posible function:

$x \mid F(x)$	x F(x)	x F(x)	$x \mid F(x)$
F F	F T	F F	FΤ
T T	T F	T F	T T

■ AND gate Output Z = T only when inputs A and B are both T Output Z = T only when inputs A or B or both are T NOT gate or inverter Output Z = T only when input A is F Simple alone, but combine a few million gates properly

and you have a computer!

Not Basic logic Gates

NAND Gate

N	NOR Gate
X Y	

X	Y	Z
F	F	T
F	T	T
T	F	T
T	T	F

X	Y	Z
F	F	T
F	T	F
T	F	F
T	T	F

Not Basic logic Gates

XOR Gate

>-	_Z	

X	Y	Z	
F	F	F	
F	T	T	
T	F	T	
T	T	r	

NXOR	Gate	

X	Y	Z
F	F	T
F	T	F
T	F	F
T	T	T

Symbolic Logic

