Boolean Algebra

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

History

\qquad

- In 1854 George Boole introduced systematic treatment of logic and developed for this purpose an algebraic system now called Boolean Algebra.
- In 1938 C. E. Shannon introduced a two-valued Boolean Algebra called Switching Algebra, in
\qquad
\qquad
\qquad which he demonstrated that this algebra can represented by electrical switching.

Chapter Outline

\qquad

- Boolean Algebra (Switching Algebra) \qquad
- Definitions
- Basic Axioms \qquad
- Basic Theorems
- Representation of Boolean Functions \qquad
- Combinational Circuit Analysis
- Combinational Circuit Synthesis \qquad
\qquad
\qquad

Boolean Algebra Definitions

```
A boolean algebraic structure consists of
    > a set of elements (constants) }\textrm{B}={0,1
    > binary operations {+,\bullet}
    > and a unary operation { }
    > such that the following axioms hold:
    1. closure: a+b is in B a b is in B
    2. commutative: a+b=b+a a a b = b a
    3. associative: a ( (b+c) = (a+b) +c a c (b c c) = (a b b) \bulletc
    4. Identity: a+0 =a a \bullet 1 = a
    distributive: }\quada+(b\cdotc)=(a+b)\bullet(a+c)\quada\bullet(b+c
    6. complement: a + a'=1 a a a' = 0
```


Definitions

- Boolean Algebra : An algebraic structure defined with a \qquad set of elements $B=\{0,1\}$, a set of binary operators $(+, ., ‘)$, and a number of unproved axioms.
- Symbolic variables such as X, Y, Z represent the elements. A variable can take the value " 0 " or " 1 " which corresponds to the condition of a logic signal.
\qquad
\qquad
- Algebraic operators :
- Addition operator (+)
- Multiplication operator (.)
- Complement operator (')

Basic Axioms

\qquad

- A variable can take only one of two values $\{0,1\}$ \qquad (A1) $X=0$ if $X \neq 1 \quad\left(A 1^{\prime}\right) X=1$ if $X \neq 0$
- NOT operation (The complement Operation) (A2) If $X=0$ then $X^{\prime}=1 \quad$ (A2') If $X=1$ then $X^{\prime}=0$
- AND and OR operations (Multiplication and Addition) :
(A3) $0.0=0$
($\mathrm{A} 3^{\prime}$ ') $0+0=0$
(A4) $1.1=1$
(A4') $1+1=1$
(A5) $0.1=1.0=0$
(A5') $1+0=0+1=1$

Generalized Demorgan's Theorem

- (T14)[F(X1,X2, ... , Xn,+, .)]’= F(X1', X2', ..., Xn', ., +)
- Example : $\mathrm{F}=(\mathrm{X} 1 . \mathrm{X} 2)+(\mathrm{X} 2+\mathrm{X} 3)$

Duality

- Duality : Every Boolean expression remains valid if the (AND, OR) operators and $\{0,1\}$ elements are interchanged.
- Mathematical definition : F is a Boolean Function, FD the dual function is
FD(X1,X2, ... , Xn, + , .,') def as F(X1, X2,, Xn, . ,+ ,')
- $\mathrm{FD} \neq \mathrm{F}$

Theorem	
7. idempotency: $x+x=x$	$x \cdot x=x$
8. involution:$\left(X^{\prime}\right)^{\prime}=X$	
9. uniting: $X \cdot Y+X \cdot Y^{\prime}=X$	$(X+Y) \cdot(X+Y)=X$
10.absorption: $\begin{aligned} & X+X \cdot Y=X \\ & \left(X+Y^{\prime}\right) \cdot Y=X \cdot Y \end{aligned}$	$\begin{aligned} & X \cdot(X+Y)=X \\ & \left(X \cdot Y^{\prime}\right)+Y=X+Y \end{aligned}$
11. factoring: $\begin{aligned} & (X+Y) \cdot\left(X^{\prime}+Z\right)= \\ & X \cdot Z+X^{\prime} \cdot Y \end{aligned}$	$\begin{aligned} & X \cdot Y+X^{\prime} \cdot \dot{Z}^{Z}= \\ & (X+Z) \cdot\left(X^{\prime}+Y\right) \end{aligned}$
12. consensus: $\begin{aligned} & (X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)= \\ & X \cdot Y+X \cdot Z \end{aligned}$	$\begin{aligned} & (X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)= \\ & (X+Y) \cdot\left(X^{\prime}+Z\right) \end{aligned}$
13. de Morgan's: $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot$ 14. generalized de Morgan's: $f^{\prime}(X 1, X 2, \ldots, X n, 0,1,+, \bullet)=f(X 1$	$\begin{aligned} & (X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots \\ & \left\langle n^{\prime}, 1,0,0,+\right) \end{aligned}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Representation of Logic Functions

- Truth table with $2^{\wedge} \mathrm{n}$ rows, n : the number of variables
- Definitions :

Literal : a variable or its complement
Example : X, Y,
n - variable minterm : product term with n literals Example : X'.Y.Z

- n - variable maxterm : sum term with n literals

Example : $\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}$

Truth Table

- Example : F (X, Y, Z)

Row	X	Y	Z	F	Minterms	Maxterms
0	0	0	0	0	X'. Y'. ${ }^{\prime}$	X + Y + Z
1	0	0	1	1	$X^{\prime}, Y^{\prime} . Z$	$X+Y+Z$,
2	0	1	0	0	X'.Y.Z'	$\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}$
3	0	1	1	1	X'.Y.Z	$\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$
4	1	0	0	0	X.Y'.Z'	$\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}$
5	1	0	1	0	X.Y'.Z	$\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}{ }^{\prime}$
6	1	1	0	1	X.Y.Z'	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}$
7	1	1	1	0	X.Y. Z	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Canonical Representation :

- Canonical Sum (Sum of Products- SOP):

Sum of minterms corresponding to input combinations for which the function produces a 1 output.

- Example :
$F=X^{\prime} . Y^{\prime} . Z+X^{\prime} . Y . Z+X . Y . Z^{\prime}$
$F_{X, Y, Z}=\Sigma(1,3,6)$
- Canonical Product (Product Of Sums-POS):

Product of maxterms corresponding to input combinations for which the function produces a 0 output. \qquad

- Example :
$\mathrm{F}=(\mathrm{X}+\mathrm{Y}+\mathrm{Z}) \cdot\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}^{\prime}\right) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)$
$\mathrm{Fx}, \mathrm{Y}, \mathrm{Z}=$ П $(0,2,4,5,7)$

