

History

- In 1854 George Boole introduced systematic treatment of logic and developed for this purpose an algebraic system now called *Boolean Algebra*.
- ◆ In 1938 C. E. Shannon introduced a two-valued Boolean Algebra called *Switching Algebra*, in which he demonstrated that this algebra can represented by electrical switching.

Chapter Outline

- Boolean Algebra (Switching Algebra)
 - Definitions
 - Basic Axioms
 - Basic Theorems
 - Representation of Boolean Functions
- Combinational Circuit Analysis
- Combinational Circuit Synthesis

Boolean Algebra Definitions

<u>A boolean algebraic structure consists of</u>
 > a set of elements (constants) B = {0,1}

- > binary operations $\{+, \bullet\}$ > and a unary operation $\{\}$
- such that the following <u>axioms</u> hold:

1.	closure:	a + b is in B	a•b is in B
2.	commutative:	a + b = b + a	$a \bullet b = b \bullet a$
3.	associative:	a + (b + c) = (a + b) + c	$a \bullet (b \bullet c) = (a \bullet b) \bullet c$
4.	Identity:	a + 0 = a	a • 1 = a
		a + 1 = 1	a • 0 = 0
5.	distributive:	$a + (b \bullet c) = (a + b) \bullet (a + c)$	$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
6.	complement:	a + a' = 1	a • a' = 0

Definitions

- Boolean Algebra : An algebraic structure defined with a set of elements $B=\{0,1\}$, a set of binary operators (+,., '), and a number of unproved axioms.
- Symbolic variables such as X, Y, Z represent the elements. A variable can take the value "0" or "1" which corresponds to the condition of a logic signal.

• Algebraic operators : - Addition operator (+)

- Multiplication operator (.)
- Complement operator (')

Basic Axioms

- ◆ A variable can take only one of two values {0,1} (A1) X=0 if $X \neq 1$ (A1') X=1 if $X\neq 0$
- NOT operation (The complement Operation) : (A2) If X=0 then X'=1 (A2') If X =1 then X'=0
- AND and OR operations (Multiplication and Addition) : (A3')0+0=0(A3)0.0=0(A4)1.1 = 1(A4')1+1=1
 - (A5)0.1=1.0=0(A5') 1 + 0 = 0 + 1 = 1

Duality

- Duality : Every Boolean expression remains <u>valid</u> if the (AND, OR) operators and {0,1}elements are interchanged.
- Mathematical definition: F is a Boolean Function, FD the dual function is: FD(X1,X2,...,Xn,+,.,') def as F(X1,X2,...,Xn,.,+,')
- $FD \neq F$

Theorem						
7. idempotency: X + X = X	$X \bullet X = X$					
8. involution: (X')' = X						
9. uniting: $X \bullet Y + X \bullet Y' = X$	$(X + Y) \bullet (X + Y') = X$					
10. absorption: $X + X \bullet Y = X$ $(X + Y') \bullet Y = X \bullet Y$	$ \begin{array}{l} X \bullet (X + Y) = X \\ (X \bullet Y') + Y = X + Y \end{array} $					
11. factoring: $(X + Y) \bullet (X' + Z) =$ $X \bullet Z + X' \bullet Y$	$\begin{array}{l} X \bullet Y + X' \bullet Z = \\ (X + Z) \bullet (X' + Y) \end{array}$					
12. consensus: $(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$	$(X + Y) \bullet (Y + Z) \bullet (X' + Z) = (X + Y) \bullet (X' + Z)$					
13. de Morgan's: (X + Y +)' = X' • Y' •	$(X \bullet Y \bullet)' = X' + Y' +$					
14. generalized de Morgan's: $f'(X1, X2,, Xn, 0, 1, +, \bullet) = f(X1', X2)$	'Xn'.1.0.∙.+)					

Representation of Logic Functions

- Truth table with 2ⁿ rows, n: the number of variables
- Definitions :
 - Literal : a variable or its complement
 - Example : X , Y' - n- variable minterm : product term with n literals Example : X'.Y.Z
 - . **F**
 - n- variable maxterm : sum term with n literals Example : X+Y'+Z

Truth Table									
♦ E	xample	: F(X, Y	7, Z)				
	Row	Х	Y	Ζ	F	Minterms	Maxterms		
	0	0	0	0	0	X'.Y'.Z'	X + Y + Z		
	1	0	0	1	1	X'.Y'.Z	X + Y + Z'		
	2	0	1	0	0	X'.Y .Z'	X + Y' + Z		
	3	0	1	1	1	X'.Y .Z	X + Y' + Z'		
	4	1	0	0	0	X .Y'.Z'	X'+Y+Z		
	5	1	0	1	0	X .Y'.Z	X'+Y+Z'		
	6	1	1	0	1	X .Y .Z'	X'+Y'+Z		
	7	1	1	1	0	X Y Z	X'+Y'+Z'		

Canonical Representation :

- Canonical Sum (Sum of Products- SOP): Sum of minterms corresponding to input combinations for which the function produces a 1 output.
 Example : F = X',Y',Z + X',Y,Z + X,Y,Z'
 - $F_{X,Y,Z} = \Sigma(1, 3, 6)$
- Canonical Product (Product Of Sums-POS): Product of maxterms corresponding to input combinations for which the function produces a 0 output.
 Example : F = (X+Y+Z).(X+Y+Z).(X'+Y+Z).(X'+Y+Z').(X'+Y+Z')

 $F_{X,Y,Z} = \Pi (0,2,4,5,7)$