
TMS320C28x DSP
CPU and Instruction Set

Reference Guide

Literature Number: SPRU430D
August 2001 − Revised March 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

iiiRead This First

Preface

Read This First

About This Manual

This manual describes the central processing unit (CPU) and the assembly language instructions of the
TMS320C28x 32-bit fixed-point digital signal processors (DSPs). It also describes emulation features
available on these DSPs. A summary of the chapters and appendixes follows:

Chapter 1 Architectural Overview
This chapter introduces the T320C2800 DSP core that is at the heart of each
TMS320C28x DSP. The chapter includes a memory map and a high-level de-
scription of the memory interface that connects the core with memory and
peripheral devices.

Chapter 2 Central Processing Unit
This chapter describes the architecture, registers, and primary functions of
the CPU. The chapter includes detailed descriptions of the flag and control
bits in the most important CPU registers, status registers ST0 and ST1.

Chapter 3 Interrupts and Reset
This chapter describes the interrupts and how they are handled by the CPU.
The chapter also explains the effects of a reset on the CPU and includes dis-
cussion of the automatic context save performed by the CPU prior to servic-
ing an interrupt.

Chapter 4 Pipeline
This chapter describes the phases and operation of the instruction pipeline.
The chapter is primarily for readers interested in increasing the efficiency of
their programs by preventing pipeline delays.

Chapter 5 Addressing Modes
This chapter explains the modes by which the assembly language instruc-
tions accept data and access register and memory locations. The chapter in-
cludes a description of how addressing-mode information is encoded in op-
codes.

Chapter 6 Assembly Language Instructions
This chapter provides summaries of the instruction set and detailed descrip-
tions (including examples) for the instructions. The chapter includes an ex-
planation of how 32-bit accesses are aligned to even addresses.

Notational Conventions

iv

Chapter 7 Emulation Features
This chapter describes the TMS320C28x emulation features that can be
used with only a JTAG port and two additional emulation pins.

Appendix A Register Quick Reference
This appendix is a concise central resource for information about the status
and control registers of the CPU. The chapter includes figures that summa-
rize the bit fields of the registers.

Appendix B Submitting ROM Codes to TI
This appendix describes the procedures for getting code-customized ROM
in a Texas Instruments (TI) DSP.

Appendix C C2xLP and C28x Architectural Differences
This appendix describes the differences in the architecture of the C2xLP and
the C28x.

Appendix D Migration From C2xLP
This appendix explains how to migrate code from the C2xLP to the C28x.

Appendix E C2xLP Instruction Set Compatibility
This appendix describes the instruction set compatibility with the C2xLP.

Appendix F Migration From C27x to C28x
This appendix explains how to migrate code from the C27x to the C28x.

Appendix G Glossary
This appendix explains abbreviations, acronyms, and special terminology
used throughout this document.

Notational Conventions
This document uses the following conventions:

� The device number TMS320C28x is very often abbreviated as �28x.

� Program examples are shown in a special typeface. Here is a sam-
ple line of program code:

PUSH IER

� Portions of an instruction syntax that are in bold should be entered as
shown; portions of a syntax that are in italics are variables indicating in-
formation that should be entered. Here is an example of an instruction
syntax:

MOV ARx, *−SP[6bit]

MOV is the instruction mnemonic. This instruction has two operands, indi-
cated by ARx and *−SP[6bit]. Where the variable x appears, you type a

About This Manual / Notational Conventions

Notational Conventions

vRead This First

value from 0 to 5; where the 6bit appears, you type a 6-bit constant. The
rest of the instruction, including the square brackets, must be entered as
shown.

� When braces or brackets enclose an operand, as in {operand}, the oper-
and is optional. If you use an optional operand, you specify the information
within the braces; you do not enter the braces themselves. In the following
syntax, the operand << shift is optional:

MOV ACC, *−SP[6bit] {<<�shift�}

MOV ACC, *−SP{6bit} {<<�shift�}

For example, you could use either of the following instructions:

MOV ACC, *−SP[5]

MOV ACC, *−SP[5]<< 4

� In most cases, hexadecimal numbers are shown with a subscript of 16. For
example, the hexadecimal number 40 would be shown as 4016. An excep-
tion to this rule is a hexadecimal number in a code example; these hexade-
cimal numbers have the suffix h. For example, the number 40 in the follow-
ing code is a hexadecimal 40.

MOVB AR0,#40h

Similarly, binary numbers usually are shown with a subscript of 2. For ex-
ample, the binary number 4 would be shown as 01002. Binary numbers in
example code have the suffix b. For example, the following code uses a
binary 4.

MOVB AR0,#0100b

� Bus signals and bits are sometimes represented with the following nota-
tions:

Notation Description Example

Bus(n:m) Signals n through m of bus PRDB(31:0) represents the 32
signals of the program-read data
bus (PRDB).

Register(n:m) Bits n through m of register T(3:0) represents the 4 least sig-
nificant bits of the T register.

Register(n) Bit n of register IER(4) represents bit 4 of the in-
terrupt enable register (IER).

Related Documentation From Texas Instruments

vi

� Concatenated values are represented with the following notation:

Notation Description Example

x:y x concatenated with y AR1:AR0 is the concatenation of
the 16-bit registers AR1 and
AR0. AR0 is the low word. AR1
is the high word.

� If a signal is from an active-low pin, the name of the signal is qualified with
an overbar (for example, INT1). If a signal is from an active-high pin or from
hardware inside the the DSP (in which case, the polarity is irrelevant), the
name of the signal is left unqualified (for example, DLOGINT).

Related Documentation From Texas Instruments

The following books describe the TMS320C28x DSP and related support
tools. The documents are available for downloading on the Texas Instruments
website (www.ti.com).

TMS320C2xx User’s Guide (literature number SPRU127) discusses the
hardware aspects of the TMS320C2xx 16-bit fixed-point digital signal
processors. It describes the architecture, the instruction set, and the on-
chip peripherals.

TMS320C28x Assembly Language Tools User’s Guide (literature number
SPRU513) describes the assembly language tools (assembler and other
tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives
for the TMS320C28x device.

TMS320C28x Optimizing C Compiler User’s Guide (literature number
SPRU514) describes the TMS320C28x C/C++ compiler. This compiler
accepts ANSI standard C/C++ source code and produces TMS320
DSP assembly language source code for the TMS320C28x device.

TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810,
TMS320C2811, and TMS320C2812 Digital Signal Processors
(literature number SPRS174) data sheet contains the electrical and
timing specifications for these devices, as well as signal descriptions and
pinouts for all of the available packages.

TMS320F2801, TMS320F2806, TMS320F2808 Digital Signal Processors
(literature number SPRS230) data sheet contains the pinout, signal de-
scriptions, as well as electrical and timing specifications for the F280x
devices.

Notational Conventions / Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

viiRead This First

TMS320C2800 Digital Signal Processor (literature number SPRS178) data
sheet contains the block diagram, component descriptions, timing
information, and electrical specifications for the TMP320C2800 DSP.

TMS320C28x Analog-to-Digital Converter (ADC) Reference Guide (litera-
ture number SPRU060) describes the ADC module. The module is a
12−bit pipelined ADC. The analog circuits of this converter, referred to
as the core in this document, include the front-end analog multiplexers
(MUXs), sample−and−hold (S/H) circuits, the conversion core, voltage
regulators, and other analog supporting circuits. Digital circuits, referred
to as the wrapper in this document, include programmable conversion
sequencer, result registers, interface to analog circuits, interface to de-
vice peripheral bus, and interface to other on-chip modules.

TMS320C28x Boot ROM Reference Guide (literature number SPRU095)
describes the purpose and features of the bootloader (factory-pro-
grammed boot-loading software). It also describes other contents of the
device on-chip boot ROM and identifies where all of the information is lo-
cated within that memory.

TMS320C28x Enhanced Controller Area Network (eCAN) Reference
Guide (literature number SPRU074) describes the eCAN that uses es-
tablished protocol to communicate serially with other controllers in elec-
trically noisy environments. With 32 fully configurable mailboxes and
time-stamping feature, the eCAN module provides a versatile and robust
serial communication interface. The eCAN module implemented in the
C28x DSP is compatible with the CAN 2.0B standard (active).

TMS320C28x Event Manager (EV) Reference Guide (literature number
SPRU065) describes the EV modules that provide a broad range of func-
tions and features that are particularly useful in motion control and motor
control applications. The EV modules include general-purpose (GP) tim-
ers, full-compare/PWM units, capture units, and quadrature-encoder
pulse (QEP) circuits.

TMS320C28x External Interface (XINTF) Reference Guide (literature num-
ber SPRU067) describes the various interrupts and system control fea-
tures of the 28x digital signal processors (DSPs).

TMS320C28x Multi-channel Buffered Serial Ports (McBSPs) Reference
Guide (literature number SPRU061) describes the McBSP) available on
the C28x devices. The McBSPs allow direct interface between a DSP
and other devices in a system.

TMS320C28x Peripheral Reference Guide (literature number SPRU566)
describes the peripheral reference guides of the 28x digital signal proc-
essors (DSPs).

Trademarks

viii

TMS320C28x Serial Communication Interface (SCI) Reference Guide (lit-
erature number SPRU051) describes the SCI that is a two-wire asyn-
chronous serial port, commonly known as a UART. The SCI modules
support digital communications between the CPU and other asynchro-
nous peripherals that use the standard non-return-to-zero (NRZ) format.

TMS320C28x Serial Peripheral Interface (SPI) Reference Guide (literature
number SPRU059) describes the SPI − a high-speed synchronous serial
input/output (I/O) port that allows a serial bit stream of programmed
length (one to sixteen bits) to be shifted into and out of the device at a
programmed bit−transfer rate. The SPI is used for communications be-
tween the DSP controller and external peripherals or another controller.

TMS320C28x System Control and Interrupts Reference Guide (literature
number SPRU078) describes the various interrupts and system control
features of the 28x digital signal processors (DSPs).

Trademarks

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

HP-UX is a trademark of Hewlett-Packard Company.

IBM and PC are trademarks of International Business Machines Corporation.

Intel is a trademark of Intel Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

PAL is a registered trademark of Advanced Micro Devices, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

C2xLP, C27x, C28x, TMS320C28x, and XDS510 are trademarks of Texas Instruments Incorporated.

Contents

ix

Contents

1 Architectural Overview 1-1.
Introduces the architecture and memory map of the T320C28x DSP CPU.

1.1 Introduction to the CPU 1-2.
1.1.1 Compatibility With Other TMS320 CPUs 1-2.
1.1.2 Switching to C28x Mode From Reset 1-3.

1.2 Components of the CPU 1-4.
1.2.1 Central Processing Unit (CPU) 1-4.
1.2.2 Emulation Logic 1-5.
1.2.3 Signals 1-6.

1.3 Memory Map 1-7.
1.3.1 On-Chip Program/Data 1-7.
1.3.2 Reserved 1-7.
1.3.3 CPU Interrupt Vectors 1-7.

1.4 Memory Interface 1-9.
1.4.1 Address and Data Buses 1-9.
1.4.2 Special Bus Operations 1-10.
1.4.3 Alignment of 32-Bit Accesses to Even Addresses 1-11.

2 Central Processing Unit 2-1.
Describes the registers and primary functions of the TMS320C28x CPU.

2.1 CPU Architecture 2-2.
2.2 CPU Registers 2-4.

2.2.1 Accumulator (ACC, AH, AL) 2-6.
2.2.2 Multiplicand Register (XT) 2-8.
2.2.3 Product Register (P, PH, PL) 2-9.
2.2.4 Data Page Pointer (DP) 2-10.
2.2.5 Stack Pointer (SP) 2-11.
2.2.6 Auxiliary Registers (XAR0−XAR7, AR0−AR7) 2-12.
2.2.7 Program Counter (PC) 2-14.
2.2.8 Return Program Counter (RPC) 2-14.
2.2.9 Status Registers (ST0, ST1) 2-14.
2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER) 2-14.

2.3 Status Register (ST0) 2-16.
2.4 Status Register ST1 2-34.
2.5 Program Flow 2-39.

Contents

x

2.5.1 Interrupts 2-39.
2.5.2 Branches, Calls, and Returns 2-39.
2.5.3 Repeating a Single Instruction 2-39.
2.5.4 Instruction Pipeline 2-40.

2.6 Multiply Operations 2-41.
2.6.1 16-bit X 16-bit Multiplication 2-41.
2.6.2 32-Bit X 32-Bit Multiplication 2-42.

2.7 Shift Operations 2-44.

3 CPU Interrupts and Reset 3-1.
Describes the TMS320C28x interrupts and how they are handled by the CPU. Also
explains the effects of a hardware reset.

3.1 CPU Interrupts Overview 3-2.
3.2 CPU Interrupt Vectors and Priorities 3-4.
3.3 Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT 3-6.

3.3.1 CPU Interrupt Flag Register (IFR) 3-7.
3.3.2 CPU Interrupt Enable Register (IER) and

CPU Debug Interrupt Enable Register (DBGIER) 3-8.
3.4 Standard Operation for Maskable Interrupts 3-11.
3.5 Nonmaskable Interrupts 3-17.

3.5.1 INTR Instruction 3-17.
3.5.2 TRAP Instruction 3-18.
3.5.3 Hardware Interrupt NMI 3-21.

3.6 Illegal-Instruction Trap 3-22.
3.7 Hardware Reset (RS) 3-23.

4 Pipeline 4-1.
Describes the phases and operation of the instruction pipeline.

4.1 Pipelining of Instructions 4-2.
4.1.1 Decoupled Pipeline Segments 4-4.
4.1.2 Instruction-Fetch Mechanism 4-4.
4.1.3 Address Counters FC, IC, and PC 4-5.

4.2 Visualizing Pipeline Activity 4-7.
4.3 Freezes in Pipeline Activity 4-10.

4.3.1 Wait States 4-10.
4.3.2 Instruction-Not-Available Condition 4-10.

4.4 Pipeline Protection 4-12.
4.4.1 Protection During Reads and Writes to the Same Data-Space Location 4-12. . . .
4.4.2 Protection Against Register Conflicts 4-13.

4.5 Avoiding Unprotected Operations 4-16.
4.5.1 Unprotected Program-Space Reads and Writes 4-16.
4.5.2 An Access to One Location That Affects Another Location 4-16.
4.5.3 Write Followed By Read Protection Mode 4-17.

5 C28x Addressing Modes 5-1.
Describes the addressing modes of the C28x.

5.1 Types of Addressing Modes 5-2.

Contents

xiContents

5.2 Addressing Modes Select Bit (AMODE) 5-4.
5.3 Assembler/Compiler Tracking of AMODE Bit 5-7.
5.4 Direct Addressing Modes (DP) 5-8.
5.5 Stack Addressing Modes (SP) 5-9.
5.6 Indirect Addressing Modes 5-10.

5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7) 5-10.
5.6.2 C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7) 5-12.
5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1) 5-21.

5.7 Register Addressing Modes 5-25.
5.7.1 32-Bit Register Addressing Modes 5-25.
5.7.2 16-Bit Register Addressing Modes 5-26.

5.8 Data/Program/IO Space Immediate Addressing Modes 5-28.
5.9 Program Space Indirect Addressing Modes 5-30.
5.10 Byte Addressing Modes 5-31.
5.11 Alignment of 32-Bit Operations 5-33.

6 C28x Assembly Language Instructions 6-1.
Presents summaries of the instruction set, defines special symbols and notations used, and
describes each instruction in detail in alphabetical order.

6.1 Instruction Set Summary (Organized by Function) 6-2.
6.2 Register Operations 6-4.

7 Emulation Features 7-1.
Explains features supported by the T320C2800 CPU for testing and debugging programs.

7.1 Overview of Emulation Features 7-2.
7.2 Debug Interface 7-3.
7.3 Debug Terminology 7-6.
7.4 Execution Control Modes 7-7.

7.4.1 Stop Mode 7-7.
7.4.2 Real-Time Mode 7-9.
7.4.3 Summary of Stop Mode and Real-Time Mode 7-11.

7.5 Aborting Interrupts With the ABORTI Instruction 7-15.
7.6 DT-DMA Mechanism 7-16.
7.7 Analysis Breakpoints, Watchpoints, and Counter(s) 7-19.

7.7.1 Analysis Breakpoints 7-19.
7.7.2 Watchpoints 7-19.
7.7.3 Benchmark Counter/Event Counter(s) 7-20.
7.7.4 Typical Analysis Unit Configurations 7-21.

7.8 Data Logging 7-23.
7.8.1 Creating a Data Logging Transfer Buffer 7-23.
7.8.2 Accessing the Emulation Registers Properly 7-26.
7.8.3 Data Log Interrupt (DLOGINT) 7-27.
7.8.4 Examples of Data Logging 7-28.

7.9 Sharing Analysis Resources 7-30.

Contents

xii

7.10 Diagnostics and Recovery 7-31.

A Register Quick Reference A-1.
Is a concise, central resource for information about the status and control registers of the
TMS320C28x CPU.

A.1 Reset Values of and Instructions for Accessing the Registers A-2.
A.2 Register Figures A-3.

B Submitting ROM Codes to TI B-1.
Explains the process for submitting custom program code to TI for designing masks for the on-
chip ROM on a TMS320 DSP.

B.1 Introduction B-2.
B.2 Code Submission B-4.
B.3 ROM Layout B-5.
B.4 ROM Code Generation Flow B-6.

C C2xLP and C28x Architectural Differences C-1.
C.1 Summary of Architecture Differences Between C2xLP and C28x C-2.

C.1.1 Enhancements of the C28x over the C2xLP: C-2.
C.2 Registers C-3.

C.2.1 CPU Register Changes C-4.
C.2.2 Data Page (DP) Pointer Changes C-5.
C.2.3 Status Register Changes C-7.
C.2.4 Register Reset Conditions C-10.

C.3 Memory Map C-12.

D C2xLP Migration Guidelines D-1.
D.1 Introduction D-2.
D.2 Recommended Migration Flow D-3.
D.3 Mixing C2xLP and C28x Assembly D-6.
D.4 Code Examples D-7.

D.4.1 Boot Code for C28x operating mode initalization D-7.
D.4.2 IER/IFR Code D-7.
D.4.3 Context Save/Restore D-8.

D.5 Reference Tables for C2xLP Code Migration Topics D-10.

E C2xLP Instruction Set Compatibility E-1.
Describes the instruction set compatibility between the C2xLP and the C28x.

E.1 Condition Tests on Flags E-2.
E.2 C2xLP vs. C28x Mnemonics E-3.
E.3 Repeatable Instructions E-9.

F Migration From C27x to C28x F-1.
F.1 Architecture Changes F-2.

F.1.1 Changes to Registers F-2.

Contents

xiiiContents

F.1.2 Full Context Save and Restore F-5.
F.1.3 B0/B1 Memory Map Consideration F-6.
F.1.4 C27x Object Compatibility F-8.

F.2 Moving to a C28x Object F-9.
F.2.1 Caution When Changing OJBMODE F-9.

F.3 Migrating to C28x Object Code F-11.
F.3.1 Instruction Syntax Changes F-11.
F.3.2 Repeatable Instructions F-13.
F.3.3 Changes to the SUBCU Instruction F-14.

F.4 Compiling C28x Source Code F-16.

Figures

xiv

Figures

1−1. High-Level Conceptual Diagram of the CPU 1-4.
1−2. TMS320C28x High-Level Memory Map 1-8.
2−1. Conceptual Block Diagram of the CPU 2-3.
2−2. C28x Registers 2-6.
2−3. Individually Accessible Portions of the Accumulator 2-7.
2−4. Individually Accessible Halves of the XT Register 2-9.
2−5. Individually Accessible Halves of the P Register 2-9.
2−6. Pages of Data Memory 2-11.
2−7. Address Reach of the Stack Pointer 2-12.
2−8. XAR0 − XAR7 Registers 2-13.
2−9. XAR0 − XAR7 2-13.
2−10. Bit Fields of Status Register (ST0) 2-16.
2−11. Bit Fields of Status Register 1 (ST1) 2-34.
2−12. Conceptual Diagram of Components Involved in 16 X16-Bit Multiplication 2-42.
2−13. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplication 2-43.
3−1. Interrupt Flag Register (IFR) 3-7.
3−2. Interrupt Enable Register (IER) 3-9.
3−3. Debug Interrupt Enable Register (DBGIER) 3-10.
3−4. Standard Operation for CPU Maskable Interrupts 3-12.
3−5. Functional Flow Chart for an Interrupt Initiated by the TRAP Instruction 3-18.
5−1. Circular Buffer with AMODE = 0 5-22.
5−2. Circular Buffer with AMODE = 1 5-24.
7−1. JTAG Header to Interface a Target to the Scan Controller 7-3.
7−2. Stop Mode Execution States 7-8.
7−3. Real-time Mode Execution States 7-10.
7−4. Stop Mode Versus Real-Time Mode 7-12.
7−5. Process for Handling a DT-DMA Request 7-17.
7−6. ADDRL (at Data-Space Address 00 083816) 7-24.
7−7. ADDRH (at Data-Space Address 00 083916) 7-24.
7−8. REFL (at Data-Space Address 00 084A16) 7-24.
7−9. REFH (at Data-Space Address 00 084B16) 7-24.
7−10. Valid Combinations of Analysis Resources 7-30.
A−1. Status register ST0 A-4.
A−2. Status register ST1, Bits15−8 A-5.
A−3. Status Register ST1, Bits 7−0 A-6.
A−4. Interrupt flag register (IFR) A-7.

Figures

xvContents

A−5. Interrupt enable register (IER) A-8.
A−6. Debug interrupt enable register (DBGIER) A-9.
B−1. TMS320 ROM Code Prototype and Production Flowchart B-3.
C−1. Register Changes From C2xLP to C28x C-3.
C−2. Direct Addressing Mode Mapping C-6.
C−3. Status Register Comparison Between C2xLP and C28x C-7.
C−4. Memory Map Comparison (See Note A) C-13.
D−1. Flow Chart of Recommended Migration Steps D-4.
F−1. C28x Registers F-2.
F−2. Full Context Save/Restore F-5.
F−3. Code for a Full Context Save/Restore for C28x vs C27x F-6.
F−4. Mapping of Memory Blocks B0 and B1 on C27x F-7.
F−5. C27x Compatible Mapping of Blocks M0 and M1 F-7.
F−6. Building a C27x Object File From C27x Source F-8.
F−7. Building a C28x Object File From Mixed C27x/C28x Source F-9.
F−8. Compiling C28x Source F-16.

Tables

xvi

Tables

1−1. Compatibility Modes 1-2.
1−2. Summary of Bus Use During Data-Space and Program-Space Accesses 1-10.
1−3. Special Bus Operations 1-11.
2−1. CPU Register Summary 2-4.
2−2. Available Operations for Shifting Values in the Accumulator 2-8.
2−3. Product Shift Modes 2-10.
2−4. Instructions That Affect OVC/OVCU 2-17.
2−5. Instructions Affected by the PM Bits 2-20.
2−6. Instructions Affected by V flag 2-21.
2−7. Negative Flag Under Overflow Conditions 2-24.
2−8. Bits Affected by the C Bit 2-25.
2−9. Instructions That Affect the TC Bit 2-31.
2−10. Instructions Affected by SXM 2-33.
2−11. Shift Operations 2-45.
3−1. Interrupt Vectors and Priorities 3-4.
3−2. Requirements for Enabling a Maskable Interrupt 3-7.
3−3. Register Pairs Saved and SP Positions for Context Saves 3-14.
3−4. Register Pairs Saved and SP Positions for Context Saves 3-20.
3−5. Registers After Reset 3-23.
5−1. Addressing Modes for �loc16� or �loc32� 5-4.
6−1. Instruction Set Summary (Organized by Function) 6-2.
6−2. Register Operations 6-4.
7−1. 14-Pin Header Signal Descriptions 7-4.
7−2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1 7-5.
7−3. Interrupt Handling Information By Mode and State 7-13.
7−4. Start Address and DMA Registers 7-25.
7−5. End-Address Registers 7-26.
7−6. Analysis Resources 7-30.
A−1. Reset Values of the Status and Control Registers A-2.
B−1. Checksum Computation Memory Locations B-7.
C−1. General Features C-2.
C−2. C2xLP Product Mode Shifter C-8.
C−3. C28x Product Mode Shifter C-8.
C−4. Reset Conditions of Internal Registers C-10.
C−5. Status Register Bits C-11.
C−6. B0 Memory Map C-14.

Tables

xviiContents

D−1. Code to Save Contents Of IMR (IER) And Disabling Lower Priority Interrupts At
Beginning Of ISR D-7.

D−2. Code to Disable an Interrupt D-7.
D−3. Code to Enable an Interrupt D-8.
D−4. Code to Clear the IFR Register D-8.
D−5. Full Context Save/Restore Comparison D-9.
D−6. C2xLP and C28x Differences in Interrupts D-10.
D−7. C2xLP and C28x Differences in Status Registers D-11.
D−8. C2xLp and C28x Differences in Memory Maps D-12.
D−9. C2xLP and C28x Differences in Instructions and Registers D-13.
D−10. Code Generation Tools and Syntax Differences D-15.
E−1. C28x and C2xLP Flags E-2.
E−2. C2xLP Instructions and C28x Equivalent Instructions E-3.
E−3. Repeatable Instructions for the C2xLP and C28x E-9.
F−1. ST0 Register Bits F-3.
F−2. ST1 Register Bits F-4.
F−3. Instruction Syntax Change F-12.

Examples

xviii

Examples

3−1. Typical ISR 3-16.
4−1. Relationship Between Pipeline and Address Counters FC, IC, and PC 4-6.
4−2. Diagramming Pipeline Activity 4-8.
4−3. Simplified Diagram of Pipeline Activity 4-9.
4−4. Conflict Between a Read From and a Write to Same Memory Location 4-13.
4−5. Register Conflict 4-14.
7−1. Initialization Code for Data Logging With Word Counter 7-28.
7−2. Initialization Code for Data Logging With End Address 7-29.

1-1

Architectural Overview

The TMS320C28x� is one of several fixed-point generations of digital signal
processors (DSPs) in the TMS320 family. The C28x� is source-code and ob-
ject-code compatible with the C27x�. In addition, much of the code written for
the C2xLP CPU can be reassembled to run on a C28x device.

The C2xLP CPU is used in all TMS320F24xx and TMS320C20x DSPs and
their derivatives. This document refers to C2xLP as a generic name for the
DSP CPU used in these devices.

This chapter provides an overview of the architectural structure and compo-
nents of the C28x CPU.

Topic Page

1.1 Introduction to the CPU 1-2.

1.2 Components of the CPU 1-4.

1.3 Memory Map 1-7.

1.4 Memory Interface 1-9.

Chapter 1

Introduction to the CPU

 1-2

1.1 Introduction to the CPU

The CPU is a low-cost 32-bit fixed-point digital signal processor (DSP). This
device draws from the best features of digital signal processing; reduced
instruction set computing (RISC); and microcontroller architectures, firmware,
and tool sets. The DSP features include a modified Harvard architecture and
circular addressing. The RISC features are single-cycle instruction execution,
register-to-register operations, and modified Harvard architecture (usable in
Von Neumann mode). The microcontroller features include ease of use
through an intuitive instruction set, byte packing and unpacking, and bit manip-
ulation.

The modified Harvard architecture of the CPU enables instruction and data
fetches to be performed in parallel. The CPU can read instructions and data
while it writes data simultaneously to maintain the single-cycle instruction op-
eration across the pipeline. The CPU does this over six separate address/data
buses.

1.1.1 Compatibility With Other TMS320 CPUs

The C28x DSP features compatibility modes that minimize the migration effort
from the C27x and C2xLP CPUs. The operating mode of the device is
determined by a combination of the OBJMODE and AMODE bits in status
register 1 (ST1) as shown in Table 1−1. The OBJMODE bit allows you to select
between code compiled for a C28x (OBJMODE == 1) and code compiled for
a C27x (OBJMODE == 0). The AMODE bit allows you to select between
C28x/C27x instruction addressing modes (AMODE == 0) and C2xLP
compatible instruction addressing modes (AMODE == 1).

Table 1−1. Compatibility Modes

OBJMODE AMODE

C28x Mode 1 0

C2xLP Source-compatible Mode 1 1

C27x Object-compatible Mode� 0 0

� The C28x is in C27x-compatible mode at reset.

� C28x Mode: In C28x mode, you can take advantage of all the C28x native
features, addressing modes, and instructions. To operate in C28x mode
from reset, your code must first set the OBJMODE bit by using the
�C28OBJ� (or �SETC OBJMODE�) instruction. This book assumes you are
operating in C28x mode unless stated otherwise.

� C2xLP Source-Compatible Mode: C2xLP source-compatible mode al-
lows you to run C2xLP source code which has been reassembled using

Introduction to the CPU

1-3Architectural Overview

the C28x code-generation tools. For more information on operating in this
mode and migration from a C2xLP CPU, see Appendices C, D, and E.

� C27x Object-Compatible Mode: At reset, the C28x CPU operates in C27x
object-compatible mode. In this mode, the C28x is 100% object-code and
cycle-count compatible with the C27x CPU. For detailed information on
operating in C27x object-compatible mode and migrating from the C27x,
see Appendix F.

1.1.2 Switching to C28x Mode From Reset

At reset, the C28x CPU is in C27x Object-Compatible Mode (OBJMODE ==
0, AMODE == 0) and is 100% compatible with the C27x CPU. To take advan-
tage of the enhanced C28x instruction set, you must instead operate the de-
vice in C28x mode. To do this, after a reset your code must first set the OBJ-
MODE bit in ST1 by using the �C28OBJ� (or �SETC OBJMODE�) instruction.

Components of the CPU

 1-4

1.2 Components of the CPU

As shown in Figure 1−1, the CPU contains:

� A CPU for generating data- and program-memory addresses; decoding
and executing instructions; performing arithmetic, logical, and shift opera-
tions; and controlling data transfers among CPU registers, data memory,
and program memory

� Emulation logic for monitoring and controlling various parts and functiona-
lities of the DSP and for testing device operation

� Signals for interfacing with memory and peripherals, clocking and control-
ling the CPU and the emulation logic, showing the status of the CPU and
the emulation logic, and using interrupts

The CPU does not contain memory, a clock generator, or peripheral devices.
For information about interfacing to these items, see the C28x Peripheral
User�s Guide (literature number SPRU566) and the data sheet that corre-
sponds to your DSP.

Figure 1−1. High-Level Conceptual Diagram of the CPU

Memory-interface signals

Clock and control signals

Reset and interrupt signals

Emulation signals

CPU

Emulation
logic

C28x CPU

1.2.1 Central Processing Unit (CPU)

The CPU is discussed in more detail in Chapter 2, but following is a list of its
major features:

� Protected pipeline. The CPU implements an 8-phase pipeline that pre-
vents a write to and a read from the same location from occurring out of
order.

� Independent register space. The CPU contains registers that are not
mapped to data space. These registers function as system-control

Components of the CPU

1-5Architectural Overview

registers, math registers, and data pointers. The system-control registers
are accessed by special instructions. The other registers are accessed by
special instructions or by a special addressing mode (register addressing
mode).

� Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arith-
metic and Boolean logic operations.

� Address register arithmetic unit (ARAU). The ARAU generates data-
memory addresses and increments or decrements pointers in parallel with
ALU operations.

� Barrel shifter. This shifter performs all left and right shifts of data. It can shift
data to the left by up to 16 bits and to the right by up to 16 bits.

� Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multi-
plication with a 64-bit result. The multiplication can be performed with two
signed numbers, two unsigned numbers, or one signed number and one
unsigned number.

1.2.2 Emulation Logic

The emulation logic includes the following features. For more details about
these features, see Chapter 7, Emulation Features.

� Debug-and-test direct memory access (DT-DMA). A debug host can gain
direct access to the content of registers and memory by taking control of
the memory interface during unused cycles of the instruction pipeline.

� Data logging. The emulation logic enables application-initiated transfers
of memory contents between the C28x and a debug host.

� A counter for performance benchmarking

� Multiple debug events. Any of the following debug events can cause a
break in program execution:

� A breakpoint initiated by the ESTOP0 or ESTOP1 instruction

� An access to a specified program-space or data-space location

� A request from the debug host or other hardware

When a debug event causes the C28x to enter the debug-halt state, the
event is called a break event.

� Real-time mode of operation. When the C28x is in this mode and a break
event occurs, the main body of program code comes to a halt, but time-crit-
ical interrupts can still be serviced.

Components of the CPU

 1-6

1.2.3 Signals

The CPU has four main types of signals:

� Memory-interface signals. These signals transfer data among the CPU,
memory, and peripherals; indicate program-memory accesses and data-
memory accesses; and differentiate between accesses of different sizes
(16-bit or 32-bit).

� Clock and control signals. These provide clocking for the CPU and the
emulation logic, and they are used to control and monitor the CPU.

� Reset and interrupt signals. These are used for generating a hardware re-
set and interrupts, and for monitoring the status of interrupts.

� Emulation signals. These signals are used for testing and debugging.

Memory Map

1-7Architectural Overview

1.3 Memory Map

The CPU contains no memory, but can access memory elsewhere on the C28x
DSP or outside the DSP.

The C28x uses 32-bit data addresses and 22-bit program addresses. This al-
lows for a total address reach of 4G words (1 word = 16 bits) in data space and
4M words in program space. Memory blocks on all C28x designs are uniformly
mapped to both program and data space. Figure 1−2 shows a high-level view
of how addresses are allocated in program space and data space.

The memory map in Figure 1−2 has been divided into the following segments:
� On-chip program/data
� Reserved
� CPU interrupt vectors

For specific details about each of the map segments, see the data sheet for
your DSP. See Appendix D for more information on the C2xLP compatible
memory space.

1.3.1 On-Chip Program/Data

All C28x-based CPU devices contain two blocks of single access on-chip
memory referred to as M0 and M1. Each of these blocks is 1K words in size.
M0 is mapped at addresses 00 000016 − 00 03FF16 and M1 is mapped at ad-
dresses 00 040016 − 00 07FF16. Like all other memory blocks on the C28x de-
vices, M0 and M1 are mapped to both program and data space. Therefore, you
can use M0 and M1 to execute code or for data variables. At reset, the stack
pointer is set to the top of block M1.

Depending on the device, it may also have additional random-access memory
(RAM), read-only memory (ROM), or flash memory.

1.3.2 Reserved

Addresses 0000 0800−0000 09FF in data space are reserved for CPU Emula-
tion Registers on all C28x designs.

1.3.3 CPU Interrupt Vectors

Sixty-four addresses in program space are set aside for a table of 32 CPU in-
terrupt vectors. The CPU vectors can be mapped to the top or bottom of pro-
gram space by way of the VMAP bit. For more information about the CPU vec-
tors, see Section 3.2, Interrupt Vectors and Priorities on page 3-4.

For devices with a peripheral interrupt expansion (PIE) block, the interrupt vec-
tors will reside in the PIE vector table and this memory can be used as program
memory.

Memory Map

1-8

Figure 1−2. TMS320C28x High-Level Memory Map

Vectors in RAM M0
(VMAP = 0)

Program

Block M0 1 K × 16

Block M1 1 K × 16

Vectors (VMAP = 1)

Data

Memory or
Peripherals

Reserved

(Reset)Block M1 1 K × 16

Vectors in RAM M0
(VMAP = 0)

Block M0 1 K × 16

<−SP

0000

3FF

400

7FF

3F 0000

FFFF FFFF

1000

9FF
800

Memory or
Peripherals

Reserved

3F FFFF

A000

Low 64K
C2xLP

Compatible
Data Space

High 64K
C2xLP

Compatible
Program

Space

See the data sheet for your specific device for details of the exact memory
map.

Memory Interface

1-9Architectural Overview

1.4 Memory Interface

The C28x memory map is accessible outside the CPU by the memory inter-
face, which connects the CPU logic to memories, peripherals, or other inter-
faces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory
while data memory is being accessed.

The interface also includes signals that indicate the type of read or write being
requested by the CPU. These signals can select a specified memory block or
peripheral for a given bus transaction. In addition to 16-bit and 32-bit ac-
cesses, the C28x supports special byte-access instructions which can access
the least significant byte (LSByte) or most significant byte (MSByte) of an ad-
dressed word. Strobe signals indicate when such an access is occurring on
a data bus.

1.4.1 Address and Data Buses

The memory interface has three address buses:

PAB Program address bus. The PAB carries addresses for reads and
writes from program space. PAB is a 22-bit bus.

DRAB Data-read address bus. The 32-bit DRAB carries addresses for
reads from data space.

DWAB Data-write address bus. The 32-bit DWAB carries addresses for
writes to data space.

The memory interface also has three data buses:

PRDB Program-read data bus. The PRDB carries instructions or data dur-
ing reads from program space. PRDB is a 32-bit bus.

DRDB Data-read data bus. The DRDB carries data during reads from data
space. PRDB is a 32-bit bus.

DWDB Data-/Program-write data bus. The 32-bit DWDB carries data during
writes to data space or program space.

Memory Interface

 1-10

Table 1−2 summarizes how these buses are used during accesses.

Table 1−2. Summary of Bus Use During Data-Space and Program-Space Accesses

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Access Type ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Address Bus ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Data Bus

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Read from program space PAB ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PRDB

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Read from data space ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

DRAB ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

DRDB

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Write to program space PAB DWDB
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Write to data space
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

DWAB DWDB

A program-space read and a program-space write cannot happen simulta-
neously because both use the PAB. Similarly, a program-space write and a
data-space write cannot happen simultaneously because both use the DWDB.
Transactions that use different buses can happen simultaneously. For exam-
ple, the CPU can read from program space (using PAB and PRDB), read from
data space (using DRAB and DRDB), and write to data space (using DWAB
and DWDB) at the same time.

1.4.2 Special Bus Operations

Typically, PAB and PRDB are used only for reading instructions from program
space, and DWDB is used only for writing data to data space. However, the
instructions in Table 1−3 are exceptions to this behavior. For more details
about using these instructions, see Chapter 6, Assembly Language Instruc-
tions.

Memory Interface

1-11Architectural Overview

Table 1−3. Special Bus Operations

InstructionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Special Bus Operation
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PREAD ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This instruction reads a data value rather than an instruction from pro-
gram space. It then transfers that value to data space or a register.

For the read from program space, the CPU places the source address
on the program address bus (PAB), sets the appropriate program-
space select signals, and reads the data value from the program-read
data bus (PRDB).

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PWRITE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This instruction writes a data value to program space. The value is
read from from data space or a register.

For the write to program space, the CPU places the destination ad-
dress on the program address bus (PAB), sets the appropriate pro-
gram-space select signals, and writes the data value to the data-/pro-
gram-write data bus (DWDB).

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

MAC
DMAC
QMACL
IMACL
XMAC
XMACD

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

As part of their operation, these instructions multiply two data values,
one of which is read from program space.

For the read from program space, the CPU places the program-space
source address on the program address bus (PAB), sets the appropri-
ate program-space select signals, and reads the program data value
from the program read data bus (PRDB).

1.4.3 Alignment of 32-Bit Accesses to Even Addresses

The C28x CPU expects memory wrappers or peripheral-interface logic to align
any 32-bit read or write to an even address. If the address-generation logic
generates an odd address, the CPU must begin reading or writing at the pre-
vious even address. This alignment does not affect the address values gener-
ated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read op-
erations and are aligned accordingly. However, alignment of instruction
fetches are effectively invisible to a programmer. When instructions are stored
to program space, they do not have to be aligned to even addresses. Instruc-
tion boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform
32-bit reads from or writes to data space.

 1-12

2-1

Central Processing Unit

The central processing unit (CPU) is responsible for controlling the flow of a
program and the processing of instructions. It performs arithmetic, Boolean-
logic, multiply, and shift operations. When performing signed math, the CPU
uses 2s-complement notation. This chapter describes the architecture, regis-
ters, and primary functions of the CPU.

Topic Page

2.1 CPU Architecture 2-2.

2.2 CPU Registers 2-4.

2.3 Status Register ST0 2-16.

2.4 Status Register ST1 2-34.

2.5 Program Flow 2-39.

2.6 Multiply Operations 2-41.

2.7 Shift Operations 2-44.

Chapter 2

CPU Architecture

 2-2

2.1 CPU Architecture

All C28x devices contain a central processing unit (CPU), emulation logic, and
signals for interfacing with memory and peripherals. Included with these sig-
nals are three address buses and three data buses. Figure 2−1 shows the ma-
jor blocks and data paths of the C28x CPU. It does not reflect the actual silicon
implementation. The shaded buses are memory-interface buses that are ex-
ternal to the CPU. The operand bus supplies the values for multiplier, shifter,
and ALU operations, and the result bus carries the results to registers and
memory. The main blocks of the CPU are:

� Program and data control logic. This logic stores a queue of instructions
that have been fetched from program memory.

� Real-Time emulation and visibility

� Address register arithmetic unit (ARAU). The ARAU generates ad-
dresses for values that must be fetched from data memory. For a data
read, it places the address on the data-read address bus (DRAB); for a
data write, it loads the data-write address bus (DWAB). The ARAU also
increments or decrements the stack pointer (SP) and the auxiliary regis-
ters (XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, and XAR7).

� Atomic arithmetic logic unit (ALU). The 32-bit ALU performs 2s-com-
plement arithmetic and Boolean logic operations. Before doing its calcula-
tions, the ALU accepts data from registers, from data memory, or from the
program control logic. The ALU saves results to a register or to data
memory.

� Prefetch queue and instruction decode

� Address generators for program and data

� Fixed-point MPY/ALU. The multiplier performs 32-bit × 32-bit 2s-comple-
ment multiplication with a 64-bit result. In conjunction with the multiplier,
the �28xx uses the 32-bit multiplicand register (XT), the 32-bit product reg-
ister (P), and the 32-bit accumulator (ACC). The XT register supplies one
of the values to be multiplied. The result of the multiplication can be sent
to the P register or to ACC.

� Interrupt processing

CPU Architecture

2-3Central Processing Unit

Figure 2−1. Conceptual Block Diagram of the CPU

Data-write buffer register

Immediate
data

XAR7

XAR0
XAR1
XAR2
XAR3
XAR4
XAR5
XAR6
XAR7

DP
SP
ST1

ARAU

Program-read data bus, PRDB(0:31)

Program address bus, PAB(0:21)

RESULT BUS

Data-read address bus, DRAB(0:31)

Data-read data bus, DRDB(0:31)

Data-read buffer register

Multiplier,
barrel shifter,

and
ALU

Data-/program-write data bus, DWDB(0:31)

Data-write address bus, DWAB(0:31)

Program-address
generation logic

Program control
logic

MUX

Immediate
address

Immediate
data

MUX

Address
from stack

AH:AL
PH:PL
T:TL
IER

DBGIER
IFR
ST0
PC

RPC

Result bus

Registers

Operand bus

CPU Registers

 2-4

2.2 CPU Registers

Table 2−1 lists the main CPU registers and their values after reset. Sections
2.2.1 through 2.2.10 describe the registers in more detail. Figure 2−2 shows
the registers.

Table 2−1. CPU Register Summary

Register Size Description Value After Reset

ACC 32 bits Accumulator 0x00000000

AH 16 bits High half of ACC 0x0000

AL 16 bits Low half of ACC 0x0000

XAR0 16 bits Auxiliary register 0 0x00000000

XAR1 32 bits Auxiliary register 1 0x00000000

XAR2 32 bits Auxiliary register 2 0x00000000

XAR3 32 bits Auxiliary register 3 0x00000000

XAR4 32 bits Auxiliary register 4 0x00000000

XAR5 32 bits Auxiliary register 5 0x00000000

XAR6 32 bits Auxiliary register 6 0x00000000

XAR7 32 bits Auxiliary register 7 0x00000000

AR0 16 bits Low half of XAR0 0x0000

AR1 16 bits Low half of XAR1 0x0000

AR2 16 bits Low half of XAR2 0x0000

AR3 16 bits Low half of XAR3 0x0000

AR4 16 bits Low half of XAR4 0x0000

AR5 16 bits Low half of XAR5 0x0000

AR6 16 bits Low half of XAR6 0x0000

AR7 16 bits Low half of XAR7 0x0000

CPU Registers

2-5Central Processing Unit

Table 2−1. CPU Register Summary (Continued)

Register Size Description Value After Reset

DP 16 bits Data-page pointer 0x0000

IFR 16 bits Interrupt flag register 0x0000

IER 16 bits Interrupt enable register 0x0000 (INT1 to INT14, DLOGINT,
RTOSINT disabled)

DBGIER 16 bits Debug interrupt enable
register

0x0000 (INT1 to INT14, DLOGINT,
RTOSINT disabled)

P 32 bits Product register 0x00000000

PH 16 bits High half of P 0x0000

PL 16 bits Low half of P 0x0000

PC 22 bits Program counter 0x3F�FFC0

RPC 22 bits Return program counter 0x00000000

SP 16 bits Stack pointer 0x0400

ST0 16 bits Status register 0 0x0000

ST1 16 bits Status register 1 0x080B�

XT 32 bits Multiplicand register 0x00000000

T 16 bits High half of XT 0x0000

TL 16 bits Low half of XT 0x0000

� Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these
devices both of these signals are tied high internal to the device.

CPU Registers

 2-6

Figure 2−2. C28x Registers

6/7-bit
offset�

SP[16]

DP[16]

AR0[16]

AR1[16]

AR2[16]

AR3[16]

AR4[16]

AR5[16]

AR6[16]

AR7[16]

AR0H[16]

AR1H[16]

AR2H[16]

AR3H[16]

AR4H[16]

AR5H[16]

AR6H[16]

AR7H[16]

XAR0[32]

XAR1[32]

XAR2[32]

XAR3[32]

XAR4[32]

XAR5[32]

XAR6[32]

XAR7[32]

PC[22]

RPC[22]

ST0[16]

IER[16]

ST1[16]

DBGIER[16]

IFR[16]

T[16]

PH[16]

TL[16]

PL[16]

AL[16]AH[16]

XT[32]

P[32]

ACC[32]

� A 6-bit offset is used when operating in C28x mode or C27x object-compatible mode.
A 7-bit offset is used when operating in C2xLP source-compatible mode. The least significant
bit of the DP is ignored when operating in this mode.

2.2.1 Accumulator (ACC, AH, AL)

The accumulator (ACC) is the main working register for the device. It is the
destination for all ALU operations except those which operate directly on
memory or registers. ACC supports single-cycle move, add, subtract, and

CPU Registers

2-7Central Processing Unit

compare operations from 32-bit-wide data memory. It can also accept the
32-bit result of a multiplication operation.

The halves and quarters of the ACC can also be accessed (see Figure 2−3).
ACC can be treated as two independent 16-bit registers: AH (high 16 bits) and
AL (low 16 bits). The bytes within AH and AL can also be accessed
independently. Special byte-move instructions load and store the most signifi-
cant byte or least significant byte of AH or AL. This enables efficient byte pack-
ing and unpacking.

Figure 2−3. Individually Accessible Portions of the Accumulator

ACC

AH AL

AH.MSB

AH = ACC (31:16)
AH.MSB = ACC (31:24)
AH.LSB = ACC (23:16)

AH.LSB AL.MSB AL.LSB

AL = ACC (15:0)
AL.MSB = ACC (15:8)
AL.LSB = ACC (7:0)

The accumulator has the following associated status bits. For the details on
these bits, see section 2.3, Status Register ST0.

� Overflow mode bit (OVM)
� Sign-extension mode bit (SXM)
� Test/control flag bit (TC)
� Carry bit (C)
� Zero flag bit (Z)
� Negative flag bit (N)
� Latched overflow flag bit (V)
� Overflow counter bits (OVC)

Table 2−2 shows the ways to shift the content of AH, AL, or ACC.

CPU Registers

 2-8

Table 2−2. Available Operations for Shifting Values in the Accumulator

Register Shift Direction Shift Type Instruction

ACC Left Logical LSL or LSLL

Rotation ROL

Right Arithmetic SFR with SXM = 1
or ASRL

Logical SFR with SXM = 0
or LSRL

Rotation ROR

AH or AL Left Logical LSL

Right Arithmetic ASR

Logical LSR

2.2.2 Multiplicand Register (XT)

The multiplicand register (XT register) is used primarily to store a 32-bit signed
integer value prior to a 32-bit multiply operation.

The lower 16-bit portion of the XT register is referred to as the TL register. This
register can be loaded with a signed 16-bit value that is automatically sign-ex-
tended to fill the 32-bit XT register.

The upper 16-bit portion of the XT register is referred to as the T register. The
T register is mainly used to store a 16-bit integer value prior to a 16-bit multiply
operation.

The T register is also used to specify the shift value for some shift operations.
In this case, only a portion of the T register is used, depending on the instruc-
tion.

For example:

ASR AX, T performs an arithmetic shift right
based on the four least significant bits
of T: T(3:0) = 0...15

ASRL ACC, T performs an arithmetic shift right by
the five least significant bits of T:
T(4:0) 0...31

For these operations, the most significant bits of T are ignored.

CPU Registers

2-9Central Processing Unit

Figure 2−4. Individually Accessible Halves of the XT Register

XT

T = XT(16:31) TL = XT(15:0)

2.2.3 Product Register (P, PH, PL)

The product register (P register) is typically used to hold the 32-bit result of a
multiplication. It can also be loaded directly from a 16- or 32-bit data-memory
location, a 16-bit constant, the 32-bit ACC, or a 16-bit or a 32-bit addressable
CPU register. The P register can be treated as a 32-bit register or as two inde-
pendent 16-bit registers: PH (high 16 bits) and PL (low 16 bits); see
Figure 2−5.

Figure 2−5. Individually Accessible Halves of the P Register

P

PH = P(31:16) PL = P(15:0)

When some instructions access P, PH, or PL, all 32-bits are copied to the ALU-
shifter block, where the barrel shifter may perform a left shift, a right shift, or
no shift. The action of the shifter for these instructions is determined by the
product shift mode (PM) bits in status register ST0. Table 2−3 shows the pos-
sible PM values and the corresponding product shift modes. When the barrel
shifter performs a left shift, the low order bits are filled with zeros. When the
shifter performs a right shift, the P register value is sign extended. Instructions
that use PH or PL as operands ignore the product shift mode.

For a complete list of instructions affected by PM bits, see Table 2−5 on page
2-20.

CPU Registers

 2-10

Table 2−3. Product Shift Modes

PM Value Product Shift Mode

0002 Left shift by 1

0012 No shift

0102 Right shift by 1

0112 Right shift by 2

1002 Right shift by 3

1012 Right shift by 4
(if AMODE = 1, left 4)

1102 Right shift by 5

1112 Right shift by 6

2.2.4 Data Page Pointer (DP)

In the direct addressing modes, data memory is addressed in blocks of 64
words called data pages. The lower 4M words of data memory consists of
65�536 data pages labeled 0 through 65�535, as shown in Figure 2−6. In DP
direct addressing mode, the 16-bit data page pointer (DP) holds the current
data page number. You change the data page by loading the DP with a new
number. For information about the direct addressing modes, see section 5.4
on page 5-8.

CPU Registers

2-11Central Processing Unit

Figure 2−6. Pages of Data Memory

11 1111 1111 1111 11

11 1111

11 1111

00 0000 0000 0000 10

00 0000 0000 0000 01
00 0000 0000 0000 10

00 0000 0000 0000 00

Data memory

Page 0:

Page 1:

Page 2:

Page 65�535:

00 0000

OffsetData page

00 0000 0000 0000 00

11 1111
00 0000 0000 0000 01

11 1111 1111 1111 11

00 0000

00 0000

11 1111

00 0000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

. ..
.

..

.

..

.

..

. ..
.

0000�0000−0000�003F

0000�0040−0000�007F

0000�0080−0000�00BF

003F�FFC0−003F�FFFF

.

.

.

.

.

.

Data memory above 4M words is not accessible using the DP.

When operating in C2xLP source-compatible mode, a 7-bit offset is used and
the least significant bit of the DP register is ignored. See Appendix C for more
details.

2.2.5 Stack Pointer (SP)

The stack pointer (SP) enables the use of a software stack in data memory.
The stack pointer has only 16 bits and can only address the low 64K of data
space (see Figure 2−7). When the SP is used, the upper six bits of the 32-bit
address are forced to 0. (For information about addressing modes that use the
SP, see section 5.5 on page 5-9.). After reset, SP points to address
0000�040016.

CPU Registers

 2-12

Figure 2−7. Address Reach of the Stack Pointer

0000�0000−0000�FFFF

0001�0000−FFFF�FFFF

Data memory

Range accessible
by way of SP

Range not accessible
by way of SP

The operation of the stack is as follows:

� The stack grows from low memory to high memory.

� The SP always points to the next empty location in the stack.

� At reset, the SP is initialized, so that it points to address 0000 040016.

� When 32-bit values are saved to the stack, the least significant 16 bits are
saved first, and the most significant 16 bits are saved to the next higher
address (little endian format).

� When 32-bit operations read or write a 32-bit value, the C28x CPU expects
the memory wrapper or peripheral-interface logic to align that read or write
to an even address. For example, if the SP contains the odd address
0000 008316, a 32-bit read operation reads from addresses 0000 008216
and 0000 008316.

� The SP overflows if its value is increased beyond FFFF16 or decreased
below 000016. When the SP increases past FFFF16, it counts forward
from 000016. For example, if SP = FFFE16 and an instruction adds 3 to the
SP, the result is 000116. When the SP decreases past 000016, it counts
backward from FFFF16. For example, if SP = 000216 and an instruction
subtracts 4 from SP, the result is FFFE16.

� When values are being saved to the stack, the SP is not forced to align with
even or odd addresses. Alignment is forced by the memory wrapper or pe-
ripheral-interface logic.

2.2.6 Auxiliary Registers (XAR0−XAR7, AR0−AR7)

The CPU provides eight 32-bit registers that can be used as pointers to
memory or as general-purpose registers (see Section 5.6, Indirect Addressing

CPU Registers

2-13Central Processing Unit

Modes, on page 5-10 . The auxiliary registers are: XAR0, XAR1, XAR2, XAR3,
XAR4, XAR5, XAR6, and XAR7.

Many instructions allow you to access the 16 LSBs of XAR0−XAR7. As shown
in Figure 2−8, the 16 LSBs of the auxiliary registers are referred to as
AR0−AR7. AR0−AR7 can be used as general purpose registers for loop con-
trol and for efficient 16-bit comparisons.

When accessing AR0−AR7, the upper 16 bits of the register (known as AR0H−
AR7H) may or may not be modified, depending on the instruction used (see
Chapter 6 for information on the behavior of particular instructions). AR0H−
AR7H are accessed only as part of XAR0−XAR7 and are not individually ac-
cessible.

Figure 2−8. XAR0 − XAR7 Registers

XARn(31:0)

ARnH = XARn(31:16) ARn = XARn(15:0)

n = number 0 through 7

For ACC operations, all 32 bits are valid (@XARn). For 16-bit operations, the
lower 16 bits are used and upper 16 bits are ignored (@ARn).

XAR0 − XAR7 can also be used by some instructions to point to any value in
program memory; see Section 5.6, Indirect Addressing Modes.

Many instructions allow you to access the 16 least significant bits (LSBs) of
XAR0−XAR7. As shown in Figure 2−9, 16 LSBs of XAR0−XAR7 are known
as one auxiliary register of AR0−AR7.

Figure 2−9. XAR0 − XAR7

XAR0(32:0)

AR0 = XAR0(15:0)

XAR7(32:0)

AR7 = XAR7(15:0)

CPU Registers

 2-14

2.2.7 Program Counter (PC)

When the pipeline is full, the 22-bit program counter (PC) always points to the
instruction that is currently being processed � the instruction that has just
reached the decode 2 phase of the pipeline. Once an instruction reaches this
phase of the pipeline, it cannot be flushed from the pipeline by an interrupt. It
is executed before the interrupt is taken. The pipeline is discussed in
Chapter 4.

2.2.8 Return Program Counter (RPC)

When a call operation is performed using the LCR instruction, the return ad-
dress is saved in the RPC register and the old value in the RPC is saved on
the stack (in two 16-bit operations). When a return operation is performed us-
ing the LRETR instruction, the return address is read from the RPC register
and the value on the stack is written into the RPC register (in two 16-bit opera-
tions). Other call instructions do not use the RPC register. For more informa-
tion, see the instructions in Chapter 6.

2.2.9 Status Registers (ST0, ST1)

The C28x has two status registers, ST0 and ST1, which contain various flag
bits and control bits. These registers can be stored into and loaded from data
memory, enabling the status of the machine to be saved and restored for sub-
routines.

The status bits have been organized according to when the bit values are mo-
dified in the pipeline. Bits in ST0 are modified in the execute phase of the pipe-
line; bits in ST1 are modified in the decode 2 phase. (For details about the pipe-
line, see Chapter 4.) The status bits are described in detail in sections 2.3
(ST0) and 2.4 (ST1). Also, ST0 and ST1 are included in Appendix A, Register
Quick Reference.

2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER)

The C28x CPU has three registers dedicated to the control of interrupts:

� Interrupt flag register (IFR)
� Interrupt enable register (IER)
� Debug interrupt enable register (DBGIER)

These registers handle interrupts at the CPU level. Devices with a peripheral
interrupt expansion (PIE) block will have additional interrupt control as part of
the PIE module.

The IFR contains flag bits for maskable interrupts (those that can be enabled
and disabled with software). When one of these flags is set, by hardware or

CPU Registers

2-15Central Processing Unit

software, the corresponding interrupt will be serviced if it is enabled. You en-
able or disable a maskable interrupt with its corresponding bit in the IER. The
DBGIER indicates the time-critical interrupts that will be serviced (if enabled)
while the DSP is in real-time emulation mode and the CPU is halted.

The C28x CPU interrupts and the interrupt-control registers are described in
detail in Chapter 3, Interrupts. Also, the IFR, IER, and DBGIER are included
in Appendix A, Register Quick Reference.

Status Register (ST0)

 2-16

2.3 Status Register (ST0)

The following figure shows the bit fields of status register (ST0). All of these
bit fields are modified in the execute phase of the pipeline. Detailed descrip-
tions of these bits follow the figure.

Figure 2−10. Bit Fields of Status Register (ST0)

15 10 9 7 6 5 4 3 2 1 0

OVC/OVCU PM V N Z C TC OVM SXM

R/W-00 0000 R/W−0 RW−0 RW−0 RW−0 RW−0 RW−0 RW−0 RW−0

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R = Read access; W = Write access; value following dash (−) is value after reset. Á
Á

OVC/OVCU
Bits15−10

Overflow counter. The overflow counter behaves differently for signed and unsigned op-
erations.

For signed operations, the overflow counter is a 6-bit signed counter with a range of −32
to 31. When overflow mode is off (OVM = 0), ACC overflows normally, and OVC keeps
track of overflows. When overflow mode is on (OVM = 1) and an overflow occurs in ACC,
the OVC is not affected. Instead, the CPU automatically fills ACC with a positive or negative
saturation value (see the description for OVM on page 2-32).

When ACC overflows in the positive direction (from 7FFF�FFFF16 to 8000�000016 �), the
OVC is incremented by 1. When ACC overflows in the negative direction (from 8000�000016
to 7FFF�FFFF16 �) the OVC is decremented by 1. The increment or decrement is performed
as the overflow affects the V flag.

For unsigned operations (OVCU), the counter increments for ADD when a Carry is
generated and decrements for a SUB when a Borrow is generated (similar to a carry
counter).

If OVC increments past its most positive value, 31, the counter wraps around to −32. If OVC
decrements past its most negative value, −32, the counter wraps around to 31. At reset,
OVC is cleared.

OVC is not affected by overflows in registers other than ACC and is not affected by compare
instructions (CMP and CMPL). The table that follows explains how OVC may be affected
by the saturate accumulator (SAT ACC) instruction.

Table 2−4 lists the instructions affecting OVC/OVCU. See the instruction set
in Chapter 6 for a complete description of each instruction.

Status Register (ST0)

2-17Central Processing Unit

Table 2−4. Instructions That Affect OVC/OVCU

Signed Addition Instructions Effect on OVC/OVCU

ADD ACC,loc16 << shift if(OVM == 0) Inc OVC on +ve signed
overflow

ADD ACC,#16bit << shift

ADD ACC,loc16 << T

ADD loc16,#16bitSigned

ADDB ACC,#8bit

ADDCL ACC,loc32

ADDCU ACC,loc16

ADDL ACC,loc32

ADDL loc32,ACC

ADDU ACC,loc16

DMAC ACC:P,loc32,*XAR7/++

INC loc16

MAC P,loc16,*XAR7/++

MAC P,loc16,0:pma

MOVA T,loc16

MOVAD T,loc16

MPYA P,loc16,#16bit

MPYA P,T,loc16

QMACL P,loc32,*XAR7/++

QMPYAL P,XT,loc32

SQRA loc16

XMAC P,loc16,*(pma)

XMACD P,loc16,*(pma)

Signed Subtraction Instructions Effect on OVC/OVCU

DEC loc16 if(OVM == 0) Dec OVC on −ve signed
overflow

MOVS T,loc16

Status Register (ST0)

 2-18

Table 2−4. Instructions That Affect OVC/OVCU (Continued)

Signed Addition Instructions Effect on OVC/OVCU

MPYS P,T,loc16

QMPYSL P,XT,loc32

SBBU ACC,loc16

SQRS loc16

SUB ACC,#16bit << shift

SUB ACC,loc16 << shift

SUB ACC,loc16 << T

SUBB ACC,#8bit

SUBBL ACC,loc32

SUBL ACC,loc32

SUBL loc32,ACC

SUBRL loc32,ACC

SUBU ACC,loc16

SUBUL ACC,loc32

SUBUL P,loc32

Unsigned Instructions Effect on OVC/OVCU

ADDUL ACC,loc32 Inc OVC/OVCU on unsigned carry

ADDUL P,loc32

IMPYAL P,XT,loc32

IMACL P,loc32,*XAR7/++

Misc Instructions Effect on OVC/OVCU

SAT ACC if(OVC > 0) Saturate +ve

if(OVC < 0) Saturate −ve

OVC = 0

SAT64 ACC:P

ZAPA OVC = 0

ZAP OVC

MOV OVC,loc16 OVC = [loc16(15:10)]

Status Register (ST0)

2-19Central Processing Unit

Table 2−4. Instructions That Affect OVC/OVCU (Continued)

Signed Addition Instructions Effect on OVC/OVCU

MOVU OVC,loc16 OVC = [loc16(5:0)]

Condition Operation Performed by SAT ACC Instruction

OVC = 0 Leave ACC and OVC unchanged.

OVC > 0 Saturate ACC in the positive direction (fill ACC with 7FFF�FFFF16), and clear OVC.

OVC < 0 Saturate ACC in the negative direction (fill ACC with 8000�000016), and clear OVC.

PM
Bits 9−7

Product shift mode bits. This 3-bit value determines the shift mode for any output opera-
tion from the product (P) register. The shift modes are shown in the following table. The out-
put can be to the ALU or to memory. All instructions that are affected by the product shift
mode will sign extend the P register value during a right shift operation. At reset, PM is
cleared (left shift by 1 bit is the default).

PM is summarized as follows:

000 Left shift by 1. During the shift, the low-order bit is zero filled. At reset, this mode
is selected.

001 No shift

010 Right shift by 1. During the shift, the lower bits are lost, and the shifted value is sign
extended.

011 Right shift by 2. During the shift, the lower bits are lost, and the shifted value is sign
extended.

100 Right shift by 3. During the shift, the lower bits are lost, and the shifted value is sign
extended.

101 Right shift by 4. During the shift, the lower bits are lost, and the shifted value is sign
extended.
Note, if AMODE = 1, then 101 is a left shift by 4.

110 Right shift by 5. During the shift, the lower bits are lost, and the shifted value is sign
extended.

111 Right shift by 6. During the shift, the lower bits are lost, and the shifted value is sign
extended.

Note: For performing unsigned arithmetic, you must use a product shift of 0 (PM = 001) to avoid sign extension and genera-
tion of incorrect results.

Table 2−5 lists instructions that are affected by the PM bits. See the instruction
set in chapter 6 for a complete description of each instruction.

Status Register (ST0)

 2-20

Table 2−5. Instructions Affected by the PM Bits

Instruction Effect of PM

CMPL ACC,P << PM flags set on(ACC − P << PM)

DMAC ACC:P,loc32,*XAR7/++ ACC = ACC + MSW*MSW << PM

 P = P + LSW*LSW << PM

IMACL P,loc32,*XAR7/++ P = ([loc32] * Prog[*XAR7/++]) << PM

IMPYAL P,XT,loc32 P = (XT * [loc32]) << PM

IMPYL P,XT,loc32 P = (XT *[loc32]) << PM

IMPYSL P,XT,loc32 ACC = ACC − P unsigned

P = (XT * [loc32]) << PM

IMPYXUL P,XT,loc32 P = (XT sign * [loc32]uns) << PM

MAC P,loc16,*XAR7/++ ACC = ACC + P << PM

MAC P,loc16,0:pma ACC = ACC + P << PM

MOV loc16,P [loc16] = low(P << PM)

MOVA T,loc16 ACC = ACC + P << PM

MOVAD T,loc16 ACC = ACC + P << PM

MOVH loc16,P [loc16] = high(P << PM)

MOVP T,loc16 ACC = P << PM

MOVS T,loc16 ACC = ACC − P << PM

MPYA P,loc16,#16bit ACC = ACC + P << PM

MPYA P,T,loc16 ACC = ACC + P << PM

MPYS P,T,loc16 ACC = ACC − P << PM

QMACL P,loc32,*XAR7 ACC = ACC + P << PM

QMACL P,loc32,*XAR7++ ACC = ACC + P << PM

QMPYAL P,XT,loc32 ACC = ACC + P << PM

QMPYSL P,XT,loc32 ACC = ACC − P << PM

SQRA loc16 ACC = ACC + P << PM

SQRS loc16 ACC = ACC − P << PM

XMAC P,loc16,*(pma) ACC = ACC + P << PM

XMACD P,loc16,*(pma) ACC = ACC + P << PM

Status Register (ST0)

2-21Central Processing Unit

V
Bit 6

Overflow flag. If the result of an operation causes an overflow in the register holding the
result, V is set and latched. If no overflow occurs, V is not modified. Once V is latched, it
remains set until it is cleared by reset or by a conditional branch instruction that tests V.
Such a conditional branch clears V regardless of whether the tested condition (V = 0 or
V = 1) is true.

An overflow occurs in ACC (and V is set) if the result of an addition or subtraction does not
fit within the signed numerical range −231 to (+231 − 1), or 8000�000016 to 7FFF�FFFF16.

An overflow occurs in AH, AL, or another 16-bit register or data-memory location if the result
of an addition or subtraction does not fit within the signed numerical range −215 to (+215 −
1), or 800016 to 7FFF16.

The instructions CMP, CMPB and CMPL do not affect the state of the V flag. Table 2−6 lists
the instructions that are affected by V flag. See Chapter 6 for more details on instructions.

V can be summarized as follows:
0 V has been cleared.
1 An overflow has been detected, or V has been set.

Table 2−6. Instructions Affected by V flag

Instruction Description

ABS ACC if(ACC == 0x8000 0000) V = 1

ABSTC ACC if(ACC == 0x8000 0000) V = 1

ADD ACC,#16bit << shift V = 1 on signed overflow

ADD ACC,loc16 << shift V = 1 on signed overflow

ADD ACC,loc16 << T V = 1 on signed overflow

ADD AX,loc16 V = 1 on signed overflow

ADD loc16,#16bitSigned V = 1 on signed overflow

ADD loc16,AX V = 1 on signed overflow

ADDB ACC,#8bit V = 1 on signed overflow

ADDB AX,#8bitSigned V = 1 on signed overflow

ADDCL ACC,loc32 V = 1 on signed overflow

ADDCU ACC,loc16 V = 1 on signed overflow

ADDL ACC,loc32 V = 1 on signed overflow

ADDL loc32,ACC V = 1 on signed overflow

ADDU ACC,loc16 V = 1 on signed overflow

ADDUL ACC,loc32 V = 1 on signed overflow

Status Register (ST0)

 2-22

Table 2−6. Instructions Affected by V flag (Continued)

Instruction Description

ADDUL P,loc32 V = 1 on signed overflow

B 16bitOff,COND V = 0 if tested

BF 16bitOff,COND V = 0 if tested

DEC loc16 V = 1 on signed overflow

DMAC ACC:P,loc32,*XAR7/++ V = 1 on signed overflow

IMACL P,loc32,*XAR7/++ V = 1 on signed overflow

IMPYAL P,XT,loc32 V = 1 on signed overflow

IMPYSL P,XT,loc32 V = 1 on signed overflow

INC loc16 V = 1 on signed overflow

MAC P,loc16,*XAR7/++ V = 1 on signed overflow

MAC P,loc16,0:pma V = 1 on signed overflow

MAX AX,loc16 if((AX − [loc16]) > 0) V = 1

MAXL ACC,loc32 if((ACC − [loc32]) > 0) V = 1

MIN AX,loc16 if((AX − [loc16]) < 0) V = 1

MINL ACC,loc32 if((ACC − [loc32]) < 0) V = 1

MOV loc16,AX,COND V = 0 if tested

MOVA T,loc16 V = 1 on signed overflow

MOVAD T,loc16 V = 1 on signed overflow

MOVB loc16,#8bit,COND V = 0 if tested

MOVL loc32,ACC,COND V = 0 if tested

MOVS T,loc16 V = 1 on signed overflow

MPYA P,loc16,#16bit V = 1 on signed overflow

MPYA P,T,loc16 V = 1 on signed overflow

MPYS P,T,loc16 V = 1 on signed overflow

NEG ACC if(ACC == 0x8000 0000) V = 1

NEG AX if(AX == 0x8000) V = 1

NEG64 ACC:P if(ACC:P == 0x80....00) V = 1

Status Register (ST0)

2-23Central Processing Unit

Table 2−6. Instructions Affected by V flag (Continued)

Instruction Description

NEGTC ACC if(TC == 1)

 if(ACC == 0x8000 0000) V = 1

QMACL P,loc32,*XAR7/++ V = 1 on signed overflow

QMPYAL P,XT,loc32 V = 1 on signed overflow

QMPYSL P,XT,loc32 V = 1 on signed overflow

SAT ACC if(OVC == 0) V = 0 else V = 1

SAT64 ACC:P if(OVC == 0) V = 0 else V = 1

SB 8bitOff,COND V = 0 if tested

SBBU ACC,loc16 V = 1 on signed overflow

SQRA loc16 V = 1 on signed overflow

SQRS loc16 V = 1 on signed overflow

SUB ACC,#16bit << shift V = 1 on signed overflow

SUB ACC,loc16 << shift V = 1 on signed overflow

SUB ACC,loc16 << T V = 1 on signed overflow

SUB AX,loc16 V = 1 on signed overflow

SUB loc16,AX V = 1 on signed overflow

SUBB ACC,#8bit V = 1 on signed overflow

SUBBL ACC,loc32 V = 1 on signed overflow

SUBL ACC,loc32 V = 1 on signed overflow

SUBL loc32,ACC V = 1 on signed overflow

SUBR loc16,AX V = 1 on signed overflow

SUBRL loc32,ACC V = 1 on signed overflow

SUBU ACC,loc16 V = 1 on signed overflow

SUBUL ACC,loc32 V = 1 on signed overflow

SUBUL P,loc32 V = 1 on signed overflow

XB pma,COND V = 0 if tested

XCALL pma,COND V = 0 if tested

XMAC P,loc16,*(pma) V = 1 on signed overflow

Status Register (ST0)

 2-24

Table 2−6. Instructions Affected by V flag (Continued)

Instruction Description

XMACD P,loc16,*(pma) V = 1 on signed overflow

XRETC COND V = 0 if tested

N
Bit 5

Negative flag. During certain operations, N is set if the result of the operation is a negative
number or cleared if the result is a positive number. At reset, N is cleared.

Results in ACC are tested for the negative condition. Bit 31 of ACC is the sign bit. If bit 31
is a 0, ACC is positive; if bit 31 is a 1, ACC is negative. N is set if a result in ACC is negative
or cleared if a result is positive.

Results in AH, AL, and other 16-bit registers or data-memory locations are also tested for
the negative condition. In these cases bit 15 of the value is the sign bit (1 indicates negative,
0 indicates positive). N is set if the value is negative or cleared if the value is positive.

The TEST ACC instruction sets N if the value in ACC is negative. Otherwise the instruction
clears N.

As shown in Table 2−7, under overflow conditions, the way the N flag is set for compare
operations is different from the way it is set for addition or subtraction operations. For addi-
tion or subtraction operations, the N flag is set to match the most significant bit of the trun-
cated result. For compare operations, the N flag assumes infinite precision. This applies
to operations whose result is loaded to ACC, AH, AL, another register, or a data-memory
location.

Table 2−7. Negative Flag Under Overflow Conditions

ÁÁÁÁ
ÁÁÁÁ

A�
ÁÁÁ
ÁÁÁ

B�
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

(A − B)
Á
Á
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Subtraction
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Compare�

Pos Neg
Neg

(due to overflow in positive direction) N = 1 N = 0

Neg Pos
Pos

(due to overflow in negative direction) N = 0 N = 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

� For 32-bit data: Pos = Positive number from 0000�000016 to 7FFF�FFFF16
Neg = Negative number from 8000�000016 to FFFF�FFFF16

For 16-bit data: Pos = Positive number from 000016 to 7FFF16
Neg = Negative number from 800016 to FFFF16

� The compare instructions are CMP, CMPB, CMPL, MIN, MAX, MINL, and MAXL.

N can be summarized as follows:
0 The tested number is positive, or N has been cleared.
1 The tested number is negative, or N has been set.

Status Register (ST0)

2-25Central Processing Unit

Z
Bit 4

Zero flag. Z is set if the result of certain operations is 0 or is cleared if the result is nonzero.
This applies to results that are loaded into ACC, AH, AL, another register, or a data-memory
location. At reset, Z is cleared.

The TEST ACC instruction sets Z if the value in ACC is 0. Otherwise, it clears Z.

Z can be summarized as follows:
0 The tested number is nonzero, or Z has been cleared.
1 The tested number is 0, or Z has been set.

C
Bit 3

Carry bit. This bit indicates when an addition or increment generates a carry or when a sub-
traction, compare, or decrement generates a borrow. It is also affected by rotate operations
on ACC and barrel shifts on ACC, AH, and AL.

During additions/increments, C is set if the addition generates a carry; otherwise C is
cleared. There is one exception: If you are using the ADD instruction with a shift of 16, the
ADD instruction can set C but cannot clear C.

During subtractions/decrements/compares, C is cleared if the subtraction generates a
carry; otherwise C is set. There is one exception: if you are using the SUB instruction with
a shift of 16, the SUB instruction can clear C but cannot set C.

This bit can be individually set and cleared by the SETC C instruction and CLRC C instruc-
tion, respectively. At reset, C is cleared.

C can be summarized as follows:
0 A subtraction generated a borrow, an addition did not generate a carry, or C has

been cleared. Exception: An ADD instruction with a shift of 16 cannot clear C.
1 An addition generated a carry, a subtraction did not generate a borrow, or C has

been set. Exception: A SUB instruction with a shift of 16 cannot set C.

Table 2−8 lists the bits that are affected by the C bit. For more information on
instructions, see Chapter 6.

Table 2−8. Bits Affected by the C Bit

Instruction Affect of or Affect on C

ABS ACC C = 0

ABSTC ACC C = 0

ADD ACC,#16bit << shift C = 1 on carry else C = 0

ADD ACC,loc16 << shift if(shift == 16)

 C = 1 on carry

if(shift != 16)

 C = 1 on carry else C = 0

Status Register (ST0)

 2-26

Table 2−8. Bits Affected by the C Bit (Continued)

Instruction Affect of or Affect on C

ADD ACC,loc16 << T C = 1 on carry else C = 0

ADD AX,loc16 C = 1 on carry else C = 0

ADD loc16,#16bitSigned C = 1 on carry else C = 0

ADD loc16,AX C = 1 on carry else C = 0

ADDB ACC,#8bit C = 1 on carry else C = 0

ADDB AX,#8bitSigned C = 1 on carry else C = 0

ADDCL ACC,loc32 ACC = ACC + [loc32] + C

C = 1 on carry else C = 0

ADDCU ACC,loc16 ACC = ACC + [loc16] + C

C = 1 on carry else C = 0

ADDL ACC,loc32 C = 1 on carry else C = 0

ADDL loc32,ACC C = 1 on carry else C = 0

ADDU ACC,loc16 C = 1 on carry else C = 0

ADDUL ACC,loc32 C = 1 on carry else C = 0

ADDUL P,loc32 C = 1 on carry else C = 0

ASR AX,1..16 C = AX(bit(shift−1))

ASR AX,T if(T == 0) C = 0

else C = AX(bit(T−1))

ASR64 ACC:P,1..16 C = P(bit(shift−1))

ASR64 ACC:P,T if(T == 0) C = 0

else C = P(bit(T−1))

ASRL ACC,T if(T == 0) C = 0

else C = ACC(bit(T−1))

B 16bitOff,COND C bit used as test condition

BF 16bitOff,COND C bit used as test condition

CLRC C C = 0

CMP AX,loc16 C = 0 on borrow else C = 1

Status Register (ST0)

2-27Central Processing Unit

Table 2−8. Bits Affected by the C Bit (Continued)

Instruction Affect of or Affect on C

CMP loc16,#16bitSigned for([loc16] − 16bitSigned)

C = 0 on borrow else C = 1

CMPB AX,#8bit C = 0 on borrow else C = 1

CMPL ACC,loc32 for(ACC − [loc32])

C = 0 on borrow else C = 1

CMPL ACC,P << PM for(ACC − P << PM)

C = 0 on borrow else C = 1

DEC loc16+ C = 0 on borrow else C = 1

DMAC ACC:P,loc32,*XAR7/++ C = 1 on carry else C = 0

IMACL P,loc32,*XAR7/++ C = 1 on carry else C = 0

IMPYAL P,XT,loc32 C = 1 on carry else C = 0

IMPYSL P,XT,loc32 C = 0 on borrow else C = 1

INC loc16 C = 1 on carry else C = 0

LSL ACC,1..16 C = ACC(bit(32−shift))

LSL ACC,T if(T == 0) C = 0

else C = ACC(bit(32−T))

LSL AX,1..16 C = AX(bit(16−shift))

LSL AX,T if(T == 0) C = 0

else C = AX(bit(16−T))

LSL64 ACC:P,1..16 C = ACC(bit(32−shift))

LSL64 ACC:P,T if(T == 0) C = 0

else C = ACC(bit(32−T))

LSLL ACC,T if(T == 0) C = 0

else C = ACC(bit(32−T))

LSR AX,1..16 C = AX(bit(shift−1))

LSR AX,T if(T == 0) C = 0

else C = AX(bit(T−1))

LSR64 ACC:P,1..16 C = P(bit(shift−1))

Status Register (ST0)

 2-28

Table 2−8. Bits Affected by the C Bit (Continued)

Instruction Affect of or Affect on C

LSR64 ACC:P,T if(T == 0) C = 0

else C = P(bit(T−1))

LSRL ACC,T if(T == 0) C = 0

else C = ACC(bit(T−1))

MAC P,loc16,*XAR7/++ C = 1 on carry else C = 0

MAC P,loc16,0:pma C = 1 on carry else C = 0

MAX AX,loc16 for(AX − [loc16])

C = 0 on borrow else C = 1

MAXL ACC,loc32 for(ACC − [loc32])

C = 0 on borrow else C = 1

MIN AX,loc16 for(AX − [loc16])

C = 0 on borrow else C = 1

MINL ACC,loc32 for(ACC − [loc32])

C = 0 on borrow else C = 1

MOV loc16,AX,COND C bit used as test condition

MOVA T,loc16 C = 1 on carry else C = 0

MOVAD T,loc16 C = 1 on carry else C = 0

MOVB loc16,#8bit,COND C bit used as test condition

MOVL loc32,ACC,COND C bit used as test condition

MOVS T,loc16 C = 0 on borrow else C = 1

MPYA P,loc16,#16bit C = 1 on carry else C = 0

MPYA P,T,loc16 C = 1 on carry else C = 0

MPYS P,T,loc16 C = 0 on borrow else C = 1

NEG ACC if(ACC == 0) C = 1

else C = 0

NEG AX if(AX == 0) C = 1

else C = 0

NEG64 ACC:P if(ACC:P == 0) C = 1

else C = 0

Status Register (ST0)

2-29Central Processing Unit

Table 2−8. Bits Affected by the C Bit (Continued)

Instruction Affect of or Affect on C

NEGTC ACC if(TC == 1)

 if(ACC == 0) C = 1

 else C = 0

QMACL P,loc32,*XAR7/++ C = 1 on carry else C = 0

QMPYAL P,XT,loc32 C = 1 on carry else C = 0

QMPYSL P,XT,loc32 C = 0 on borrow else C = 1

ROL ACC C <− (ACC << 1) <− C(before)

ROR ACC C(before) −> (ACC >> 1) −> C

SAT ACC C = 0

SAT64 ACC:P C = 0

SB 8bitOff,COND C bit used as test condition

SBBU ACC,loc16 ACC = ACC − ([loc16] + ~C)

C = 0 on borrow else C = 1

SETC C C = 1

SFR ACC,1..16 C = ACC(bit(shift−1))

SFR ACC,T if(T == 0) C = 0

else C = ACC(bit(T−1))

SQRA loc16 C = 1 on carry else C = 0

SQRS loc16 C = 0 on borrow else C = 1

SUB ACC,#16bit << shift C = 0 on borrow else C = 1

SUB ACC,loc16 << shift if(shift == 16)

 C = 0 on borrow

if(shift != 16)

 C = 0 on borrow else C = 1

SUB ACC,loc16 << T C = 0 on borrow else C = 1

SUB AX,loc16 C = 0 on borrow else C = 1

SUB loc16,AX C = 0 on borrow else C = 1

SUBB ACC,#8bit C = 0 on borrow else C = 1

Status Register (ST0)

 2-30

Table 2−8. Bits Affected by the C Bit (Continued)

Instruction Affect of or Affect on C

SUBBL ACC,loc32 ACC = ACC − ([loc32] + ~C)

C = 0 on borrow else C = 1

SUBCU ACC,loc16 for(ACC − [loc16]<<15)

C = 0 on borrow else C = 1

SUBCUL ACC,loc32 for(ACC<<1 + P(31) − [loc32])

C = 0 on borrow else C = 1

SUBL ACC,loc32 C = 0 on borrow else C = 1

SUBL loc32,ACC C = 0 on borrow else C = 1

SUBR loc16,AX C = 0 on borrow else C = 1

SUBRL loc32,ACC C = 0 on borrow else C = 1

SUBU ACC,loc16 C = 0 on borrow else C = 1

SUBUL ACC,loc32 C = 0 on borrow else C = 1

SUBUL P,loc32 C = 0 on borrow else C = 1

XB pma,COND C bit used as test condition

XCALL pma,COND C bit used as test condition

XMAC P,loc16,*(pma) C = 1 on carry else C = 0

XMACD P,loc16,*(pma) C = 1 on carry else C = 0

XRETC COND C bit used as test condition

TC
Bit 2

Test/control flag. This bit shows the result of a test performed by either the TBIT (test bit)
instruction or the NORM (normalize) instruction.

The TBIT instruction tests a specified bit. When TBIT is executed, the TC bit is set if the
tested bit is 1 or cleared if the tested bit is 0.

When a NORM instruction is executed, TC is modified as follows: If ACC holds 0, TC is set.
If ACC does not hold 0, the CPU calculates the exclusive-OR of ACC bits 31 and 30, and
then loads TC with the result.

This bit can be individually set and cleared by the SETC TC instruction and CLRC TC
instruction, respectively. At reset, TC is cleared.

Table 2−9 lists the instructions that affect the TC bit. See the instruction set in
Chapter 6 for a complete description of each instruction.

Status Register (ST0)

2-31Central Processing Unit

Table 2−9. Instructions That Affect the TC Bit

Instruction Affect on the TC bit

ABSTC ACC if(ACC < 0) TC = TC ^ 1

B 16bitOff,COND TC bit used as test condition

BF 16bitOff,COND TC bit used as test condition

CLRC TC TC = 0

CMPR 0/1/2/3 TC = 0

0: if(AR(ARP) == AR0) TC = 1

1: if(AR(ARP) < AR0) TC = 1

2: if(AR(ARP) > AR0) TC = 1

3: if(AR(ARP) != AR0) TC = 1

CSB ACC TC = N flag

MOV loc16,AX,COND TC bit used as test condition

MOVB loc16,#8bit,COND TC bit used as test condition

MOVL loc32,ACC,COND TC bit used as test condition

NEGTC ACC TC bit used as test condition

NORM ACC,XARn++/−−

NORM ACC,*ind

if(ACC |= 0)

 TC = ACC(31) ^ ACC(30)

else

 TC = 1

SB 8bitOff,COND TC bit used as test condi-
tion

SBF 8bitOff,TC/NTC TC bit used as test condition

SETC TC TC = 1

TBIT loc16,#bit TC = [loc16(bit)]

TBIT loc16,T TC = [loc16(15−T)]

TCLR loc16,#bit TC = [loc16(bit)]

TSET loc16,#bit TC = [loc16(bit)]

XB pma,COND TC bit used as test condition

XCALL pma,COND TC bit used as test condition

XRETC COND TC bit used as test condition

Status Register (ST0)

 2-32

OVM
Bit 1

Overflow mode bit. When ACC accepts the result of an addition or subtraction and the
result causes an overflow, OVM determines how the CPU handles the overflow as fol-
lows:.

0 Results overflow normally in ACC. The OVC reflects the overflow (see the de-
scription for the OVC on page 2-16)

1 ACC is filled with either its most positive or most negative value as follows:

If ACC overflows in the positive direction (from 7FFF�FFFF16 to 8000�000016 �),
ACC is then filled with 7FFF�FFFF16.

If ACC overflows in the negative direction (from 8000�000016 to 7FFF�FFFF16 �),
ACC is then filled with 8000�000016.

This bit can be individually set and cleared by the SETC OVM instruction and
CLRC OVM instruction, respectively. At reset, OVM is cleared.

SXM
Bit 0

Sign-extension mode bit. SXM affects the MOV, ADD, and SUB instructions that use a
16-bit value in an operation on the 32-bit accumulator. When the 16-bit value is loaded
into (MOV), added to (ADD), or subtracted from (SUB) the accumulator, SXM deter-
mines whether the value is sign extended during the operation as follows:

0 Sign extension is suppressed. (The value is treated as unsigned.)i

1 Sign extension is enabled. (The value is treated as signed.)

SXM also determines whether the accumulator is sign extended when it is shifted right
by the SFR instruction. SXM does not affect instructions that shift the product register
value; all right shifts of the product register value use sign extension.

This bit can be individually set and cleared by the SETC SXM instruction and
CLRC SXM instruction, respectively. At reset, SXM is cleared. Table 2−10 lists the in-
structions that are affected by SXM. See Chapter 6 for more details on instructions.

Status Register (ST0)

2-33Central Processing Unit

Table 2−10. Instructions Affected by SXM

Instruction Description

ADD ACC,#16bit << shift Affected By SXM

ADD ACC,loc16 << shift Affected By SXM

ADD ACC,loc16 << T Affected By SXM

CLRC SXM SXM = 0

MOV ACC,#16bit << shift Affected By SXM

MOV ACC,loc16 << shift Affected By SXM

MOV ACC,loc16 << T Affected By SXM

SETC SXM SXM = 1

SFR ACC,1..16 Affected By SXM

SFR ACC,T Affected By SXM

SUB ACC,#16bit << shift Affected By SXM

SUB ACC,loc16 << shift Affected By SXM

SUB ACC,loc16 << T Affected By SXM

Status Register ST1

 2-34

2.4 Status Register ST1
The following figure shows the bit fields of status register ST1. All of these bit
fields are modified in the decode 2 phase of the pipeline. Detailed descriptions
of these bits follow the figure.

Figure 2−11.Bit Fields of Status Register 1 (ST1)

15 13 12 11 10 9 8

ARP XF M0M1MAP Reserved OBJMODE AMODE

R/W-000 R/W−0 R/W−1 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

IDLESTAT EALLOW LOOP SPA VMAP PAGE0 DBGM INTM

R−0 R/W−0 R−0 R/W−0 R/W−1 R/W−0 R/W−1 R/W−1

ARP
Bits 15−13

Auxiliary register pointer. This 3-bit field points to the current auxiliary register. This is one
of the 32-bit auxiliary registers (XAR0−XAR7). The mapping of ARP values to auxiliary reg-
isters is as follows:

ARP Selected Auxiliary Register

000 XAR0 (selected at reset)

001 XAR1

010 XAR2

011 XAR3

100 XAR4

101 XAR5

110 XAR6

111 XAR7

XF
Bit 12

XF status bit. This bit reflects the current state of the XFS output signal, which is com-
patible to the C2XLP CPU. This bit is set by the �SETC XF� instruction. This bit is
cleared by the �CLRC XF� instruction. The pipeline is not flushed when setting or clear-
ing this bit using the given instructions. This bit can be saved and restored by interrupts
and when restoring the ST1 register. This bit is set to 0 on reset.

M0M1MAP
Bit 11

M0 and M1 mapping mode bit. The M0M1MAP bit should always remain set to 1 in
the C28x object mode. This is the default value at reset. The M0M1MAP bit may be set
low when operating in C27x-compatible mode. The effect of this bit, when low, is to
swap the location of blocks M0 and M1 only in program space and to set the stack
pointer default reset value to 0x000. C28x mode users should never set this bit to 0.

Status Register ST1

2-35Central Processing Unit

Reserved
Bit 10

Reserved. This bit is reserved. Writes to this bit have no effect.

OBJMODE
Bit 9

Object compatibility mode bit. This mode is used to select between C27x object
mode (OBJMODE == 0) and C28x object mode (OBJMODE == 1) compatibility. This bit
is set by the �C28OBJ� (or �SETC OBJMODE�) instructions. This bit is cleared by the
�C27OBJ� (or �CLRC OBJMODE�) instructions. The pipeline is flushed when setting or
clearing this bit using the given instructions. This bit is saved and restored by interrupts
and when restoring the ST1 register. This bit is set to 0 on reset.

AMODE
Bit 8

Address mode bit. This mode, in conjunction with the PAGE0 mode bit, is used to se-
lect the appropriate addressing mode decodes. This bit is set by the �LPADDR� (�SETC
AMODE�) instructions. This bit is cleared by the �C28ADDR� (or �CLRC AMODE�) in-
structions. The pipeline is not flushed when setting or clearing this bit using the given
instructions. This bit is saved and restored by interrupts and when restoring the ST1
register. This bit is set to 0 on reset.

Note: Setting PAGE0 = AMODE = 1 will generate an illegal instruction trap ONLY for
instructions that decode a memory or register addressing mode field (loc16 or loc32).

IDLESTAT
Bit 7

IDLE status bit. This ready-only bit is set when the IDLE instruction is executed. It is
cleared by any one of the following events:

� An interrupt is serviced.

� An interrupt is not serviced but takes the CPU out of the IDLE state.

� A valid instruction enters the instruction register (the register that holds the instruction
currently being decoded).

� A device reset occurs.

When the CPU services an interrupt, the current value of IDLESTAT is saved on the
stack (when ST1 is saved on the stack), and then IDLESTAT is cleared. Upon return
from the interrupt, IDLESTAT is not restored from the stack.

EALLOW
Bit 6

Emulation access enable bit. This bit, when set, enables access to emulation and
other protected registers. Set this bit by using the EALLOW instruction and clear this bit
by using the EDIS instruction. See the data sheet for a particular device to determine
the registers that are protected.

When the CPU services an interrupt, the current value of EALLOW is saved on the
stack (when ST1 is saved on the stack), and then EALLOW is cleared. Therefore, at the
start of an interrupt service routine (ISR), access to protected registers is disabled. If the
ISR must access protected registers, it must include an EALLOW instruction. At the end
of the ISR, EALLOW can be restored by the IRET instruction.

LOOP
Bit 5

Loop instruction status bit. LOOP is set when a loop instruction (LOOPNZ or
LOOPZ) reaches the decode 2 phase of the pipeline. The loop instruction does not end
until a specified condition is met. When the condition is met, LOOP is cleared. LOOP is
a read-only bit; it is not affected by any instruction except a loop instruction.

Status Register ST1

 2-36

When the CPU services an interrupt, the current value of LOOP is saved on the stack
(when ST1 is saved on the stack), and then LOOP is cleared. Upon return from the in-
terrupt, LOOP is not restored from the stack.

SPA
Bits 4

Stack pointer alignment bit. SPA indicates whether the CPU has previously aligned
the stack pointer to an even address by the ASP instruction:
0 The stack pointer has not been aligned to an even address.
1 The stack pointer has been aligned to an even address.

When the ASP (align stack pointer) instruction is executed, if the stack pointer (SP)
points to an odd address, SP is incremented by 1 so that it points to an even address,
and SPA is set. If SP already points to an even address, SP is not changed, but SPA is
cleared. When the NASP (unalign stack pointer) instruction is executed, if SPA is 1, SP
is decremented by 1 and SPA is cleared. If SPA is 0, SP is not changed.

At reset, SPA is cleared.

VMAP
Bit 3

Vector map bit. VMAP determines whether the CPU interrupt vectors (including the
reset vector) are mapped to the lowest or highest addresses in program memory:
0 CPU interrupt vectors are mapped to the bottom of program memory, addresses

00 000016−00 003F16.
1 CPU interrupt vectors are mapped to the top of program memory, addresses

3F FFC016−3F FFFF16.

On C28x designs, the VMAP signal is tied high internally, forcing the VMAP bit to be set
high on a reset.

This bit can be individually set and cleared by the SETC VMAP instruction and
CLRC VMAP instruction, respectively.

PAGE0
Bit 2

PAGE0 addressing mode configuration bit. PAGE0 selects between two mutually-ex-
clusive addressing modes: PAGE0 direct addressing mode and PAGE0 stack addres-
sing mode. Selection of the modes is as follows:
0 PAGE0 stack addressing mode
1 PAGE0 direct addressing mode

Note: Illegal Instruction Trap

Setting PAGE0 = AMODE = 1 will generate an illegal instruction trap.

PAGE0 = 1 is included for compatibility with the C27x. the recommended operating
mode for C28x is PAGE0 = 0.

This bit can be individually set and cleared by the SETC PAGE0 instruction and
CLRC PAGE0 instruction, respectively. At reset, the PAGE0 bit is cleared (PAGE0 stack
addressing mode is selected).

For details about the above addressing modes, see Chapter 5, Addressing Modes.

Status Register ST1

2-37Central Processing Unit

DBGM
Bit 1

Debug enable mask bit. When DBGM is set, the emulator cannot accesss memory or
registers in real time. The debugger cannot update its windows.

In the real-time emulation mode, if DBGM = 1, the CPU ignores halt requests or hard-
ware breakpoints until DBGM is cleared. DBGM does not prevent the CPU from halting
at a software breakpoint. One effect of this may be seen in real-time emulation mode.
If you single-step an instruction in real time emulation mode and that instruction sets
DBGM, the CPU continues to execute instructions until DBGM is cleared.

When you give the TI debugger the REALTIME command (to enter real-time mode),
DBGM is forced to 0. Having DBGM = 0 ensures that debug and test direct memory
accesses (DT-DMAs) are allowed; memory and register values can be passed to the
host processor for updating debugger windows.

Before the CPU executes an interrupt service routine (ISR), it sets DBGM. When
DBGM = 1, halt requests from the host processor and hardware breakpoints are ig-
nored. If you want to single-step through or set breakpoints in a non-time-critical ISR,
you must add a CLRC DBGM instruction at the beginning of the ISR.

DBGM is primarily used in emulation to block debug events in time-critical portions of
program code. DBGM enables or disables debug events as follows:

0 Debug events are enabled.

1 Debug events are disabled.

When the CPU services an interrupt, the current value of DBGM is saved on the stack
(when ST1 is saved on the stack), and then DBGM is set. Upon return from the inter-
rupt, DBGM is restored from the stack.

This bit can be individually set and cleared by the SETC DBGM instruction and
CLRC DBGM instruction, respectively. DBGM is also set automatically during interrupt
operations. At reset, DBGM is set. Executing the ABORTI (abort interrupt) instruction
also sets DBGM.

INTM
Bit 0

Interrupt global mask bit. This bit globally enables or disables all maskable CPU inter-
rupts (those that can be blocked by software):

0 Maskable interrupts are globally enabled. To be acknowledged by the CPU, a
maskable interrupt must also be locally enabled by the interrupt enable register
(IER).

1 Maskable interrupts are globally disabled. Even if a maskable interrupt is local-
ly enabled by the IER, it is not acknowledged by the CPU.

INTM has no effect on the nonmaskable interrupts, including a hardware reset or the
hardware interrupt NMI. In addition, when the CPU is halted in real-time emulation
mode, an interrupt enabled by the IER and the DBGIER will be serviced even if INTM is
set to disable maskable interrupts.

Status Register ST1

 2-38

When the CPU services an interrupt, the current value of INTM is saved on the stack
(when ST1 is saved on the stack), and then INTM is set. Upon return from the interrupt,
INTM is restored from the stack.

This bit can be individually set and cleared by the SETC INTM instruction and
CLRC INTM instruction, respectively. At reset, INTM is set. The value in INTM does not
cause modification to the interrupt flag register (IFR), the interrupt enable register (IER),
or the debug interrupt enable register (DBGIER).

Program Flow

2-39Central Processing Unit

2.5 Program Flow

The program control logic and program-address generation logic work togeth-
er to provide proper program flow. Normally, the flow of a program is sequen-
tial: the CPU executes instructions at consecutive program-memory address-
es. At times, a discontinuity is required; that is, a program must branch to a
nonsequential address and then execute instructions sequentially at that new
location. For this purpose, the �28x supports interrupts, branches, calls, re-
turns, and repeats.

Proper program flow also requires smooth flow at the instruction level. To meet
this need, the �28x has a protected pipeline and an instruction-fetch mecha-
nism that attempts to keep the pipeline full.

2.5.1 Interrupts

Interrupts are hardware- or software-driven events that cause the CPU to sus-
pend its current program sequence and execute a subroutine called an inter-
rupt service routine. Interrupts are described in detail in Chapter 3.

2.5.2 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by trans-
ferring control to another location in program memory. A branch only transfers
control to the new location. A call also saves the return address (the address
of the instruction following the call). Called subroutines or interrupt service rou-
tines are each concluded with a return instruction, which takes the return ad-
dress from the stack or from XAR7 or RPC and places it into the program
counter (PC).

The following branch instructions are conditional: B, BANZ, BAR, BF, SB, SBF,
XBANZ, XCALL, and XRETC. They are executed only if a certain specified or
predefined condition is met. For detailed descriptions of these instructions,
see Chapter 6, Assembly Language Instructions.

2.5.3 Repeating a Single Instruction

The repeat (RPT) instruction allows the execution of a single instruction
(N + 1) times, where N is specified as an operand of the RPT instruction. The
instruction is executed once and then repeated N times. When RPT is
executed, the repeat counter (RPTC) is loaded with N. RPTC is then decrem-
ented every time the repeated instruction is executed, until RPTC equals 0. For
a description of RPT and a list of repeatable instructions, see Chapter 6, As-
sembly Language Instructions.

Program Flow

 2-40

2.5.4 Instruction Pipeline

Each instruction passes through eight independent phases that form an
instruction pipeline. At any given time, up to eight instructions may be active,
each in a different phase of completion. Not all reads and writes happen in the
same phases, but a pipeline-protection mechanism stalls instructions as
needed to ensure that reads and writes to the same location happen in the or-
der in which they are programmed.

To maximize pipeline efficiency, an instruction-fetch mechanism attempts to
keep the pipeline full. Its role is to fill an instruction-fetch queue, which holds
instructions in preparation for decoding and execution. The instruction-fetch
mechanism fetches 32-bits at a time from program memory; it fetches one
32-bit instruction or two 16-bit instructions.

The instruction-fetch mechanism uses three program-address counters: the
program counter (PC), the instruction counter (IC), and the fetch counter (FC).
When the pipeline is full the PC will always point to the instruction in its
decode 2 pipeline phase. The IC points to the next instruction to be processed.
When the PC points to a 1-word instruction, IC = (PC+1); when the PC points
to a 2-word instruction, IC = (PC+2). The value in the FC is the address from
which the next fetch is to be made.

The pipeline and the instruction-fetch mechanism are described in more detail
in Chapter 4, Pipeline.

Multiply Operations

2-41Central Processing Unit

2.6 Multiply Operations

The C28x features a hardware multiplier that can perform 16-bit X 16-bit or
32-bit X 32-bit fixed-point multiplication. This functionality is enhanced by
16-bit X 16-bit multiply and accumulate (MAC), 32 X 32 MAC, and
16-bit X 16-bit dual MAC (DMAC) instructions. This section describes the com-
ponents involved in each type of multiplication.

2.6.1 16-bit X 16-bit Multiplication

The C28x multiplier can perform a 16-bit X 16-bit multiplication to produce a
signed or unsigned 32-bit product. Figure 2−12 shows the CPU components
involved in this multiplication.

The multiplier accepts two 16-bit inputs:

� One input is from the upper 16 bits of the multiplicand register (T). Most
16 X 16 multiplication instructions require that you load T from a data-
memory location or a register before you execute the instruction. Howev-
er, the MAC and some versions of the MPY and MPYA instructions load
T for you before the multiplication.

� The other input is from one of the following:

� A data-memory location or a register (depending on which you specify
in the multiply instruction).

� An instruction opcode. Some C28x multiply instructions allow you to
include a constant as an operation.

After the value has been multiplied by the second value, the 32-bit result is
stored in one of two places, depending on the particular multiply instruction:
the 32-bit product register (P) or the 32-bit accumulator (ACC).

One special 16-bit X 16-bit multiplication instruction takes two 32-bit input val-
ues as its operands. This instruction is the 16 X 16 DMAC instruction, which
performs dual 16 X 16 MAC operations in one instruction. In this case, the ACC
contains the result of multiplying and adding the upper word of the 32-bit oper-
ands. The P register contains the result of multiplying and adding the results
of the lower word of the 32-bit operands.

Multiply Operations

 2-42

Figure 2−12. Conceptual Diagram of Components Involved in 16 X16-Bit Multiplication

T

P ACC

Multiplier

MUX

From data memory or a register

16

From an instruction opcode

16

16 16

From data memory or a register

16

32

MUX

32 32

2.6.2 32-Bit X 32-Bit Multiplication

The C28x multiplier can also perform 32-bit by 32-bit multiplication.
Figure 2−13 shows the CPU components involved n this multiplication.
In this case, the multiplier accepts two 32-bit inputs:

� The first input is from one of the following:

� A program memory location. Some C28x 32 X 32 multiply MAC-type
instructions such as IMACL and QMACL take one data value directly
from memory using the program-address bus.

� The 32-bit multiplicand register (XT). Most 32 X 32-bit multiplication
instructions require that you load XT from data memory or a register
before you execute the instruction.

� A data-memory location or a register (depending on which you specify in
the multiply instruction).

After the two values have ben multiplied, 32 bits of the 64-bit result are stored
in the product register (P). You can control which half is stored (upper 32 bits
or lower 32 Bits) and whether the multiplication is signed or unsigned by the
instruction used.

Multiply Operations

2-43Central Processing Unit

If you need support for larger data values, the 32 X 32 multiplication instruc-
tions can be combined to implement 32 X 32 = 64-bit or 64 X 64 = 128-bit math.

Figure 2−13. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplication

XT

Multiplier

MUX
From data

memory or register

32

From
program
memory

32

32 32

From data memory
or register32

lower 32

MUX

32
P

upper 32

Shift Operations

 2-44

2.7 Shift Operations

The shifter holds 64 bits and accepts either a 16-bit, 32-bit, or 64-bit input
value. When the input value has 16 bits, the value is loaded into the 16 least
significant bits (LSBs) of the shifter. When the input value has 32 bits, the value
is loaded into the 32 LSBs of the shifter. Depending on the instruction that uses
the shifter, the output of the shifter may be all of its 64 bits or just its 16 LSBs.

When a value is shifted right by an amount N, the N LSBs of the value are lost
and the bits to the left of the value are filled with all 0s or all 1s. If sign extension
is specified, the bits to the left are filled with copies of the sign bit. If sign exten-
sion is not specified, the bits to the left are filled with 0s, or zero filled.

When a value is shifted left by an amount N, the bits to the right of the shifted
value are zero filled. If the value has 16 bits and sign extension is specified,
the bits to the left are filled with copies of the sign bit. If the value has 16 bits
and sign extension is not specified, the bits to the left are zero filled. If the value
has 32 bits, the N MSBs of the value are lost, and sign extension is irrelevant.

Table 2−11 lists the instructions that use the shifter and provides an illustration
of the corresponding shifter operation. The table uses the following graphical
symbols:

Shift left This symbol represents the 32-bit shifter. The text
inside the box indicates the direction of the shift.

0
This symbol indicates zero filling.

Sign
This symbol indicates sign extending.

0/Sign

SXM This symbol indicates that the MSBs of the shifter
depend on the sign-extension mode bit (SXM). If
SXM = 0, the MSBs are zero filled after the shift. If
SXM = 1, the MSBs are filled with the sign of the
shifted value.

C
This symbol indicates the carry bit (C).

For explanations of the instruction syntaxes listed in Table 2−11, see
Chapter 6, Assembly Language Instructions.

Shift Operations

2-45Central Processing Unit

Table 2−11. Shift Operations

Operation Type Illustration

Left shift of 16-bit value for ACC
operation. Syntaxes:

ADD ACC, loc16 <<0...16

ADD ACC, #16Bit <<0...15

ADD ACC, loc16 <<T

SUB ACC, loc16 << 0...16

SUB ACC, #16Bit <<0 ...15

SUB ACC, loc16<<T

MOV ACC, loc16 << 0...16

MOV ACC, #16Bit << 0...15

MOV ACC, loc16, <<T

Shift left 0

16-bit value to 16 LSBs

0/Sign

32 bits to ALU

SXM

Store 16 LSBs of left-shifted ACC.
Syntax:

MOV loc16, ACC << 1...8
Shift left 0

ACC

16 LSBs to ALU

Discard

Store 16 MSBs of left-shifted ACC.
Syntax:

MOVH loc16, ACC <<1...8
Note: This instruction performs a single
right shift by (16−shift1), where shift1 is a
value from 0 to 8.

Shift right

ACC

16 LSBs to ALU

Discard

Logical left shift of ACC. The last bit to
be shifted out fills the carry bit (C).
Syntaxes:

LSL ACC, 1...16

LSL ACC, T (shift = T(3:0))
LSL ACC, T (shift = T(4:0))
Note: If T(3:0) = 0 or T(4:0) = 0, indicating
a shift of 0, C is cleared.

Shift left 0

ACC

32 bits to ACC

C
Last
bit out

Discard
other bits

Shift Operations

 2-46

Table 2−11. Shift Operations (Continued)

Operation Type Illustration

Logical left shift of AH or AL. The last
bit to be shifted out fills the carry bit (C).
Syntaxes:

LSL AX, 1...16

LSL AX, T (shift = T(3:0))
Note: If T(3:0) = 0, indicating a shift of 0,
C is cleared.

Shift left 0

AH/AL to 16 LSBs

16 LSBs to AH/AL

C
Last
bit out

Right shift of ACC. If SXM = 0, a logical
shift is performed. If SXM = 1, an
arithmetic shift is performed. The last bit
to be shifted out fills the carry bit (C).
Syntaxes:

SFR ACC, 1...16

SFR ACC, T
Note: If T(3:0) = 0, indicating a shift of 0,
C is cleared.

Shift right

ACC

32 bits to ACC

0/Sign

SXM C
Last
bit out

Discard
other bits

Logical right shift of AH or AL. The last
bit to be shifted out fills the carry bit (C).
Syntaxes:

LSR AX, shift

LSR AX, T (shift = T(3:0))
ARLACC, T (shift = T(4:0)
Note: If T(4:0) = 0, indicating a shift of 0,
C is cleared.

Shift right

AH/AL to 16 LSBs

16 LSBs to AH/AL

0

C
Last
bit out

Discard
other bits

Arithmetic right shift of AH or AL. The
last bit to be shifted out fills the carry bit
(C). Syntaxes:

ASR AX, shift

ASR AX, T
Note: If T(4:0) = 0, indicating a shift of 0,
C is cleared.

Shift right
C

AH/AL to 16 LSBs

Sign

16 LSBs to AH/AL

Last
bit out

Discard
other bits

Rotate ACC left by 1 bit. Bit 31 of ACC
fills the carry bit (C). C fills bit 0 of ACC.
Syntax:

ROL ACC
Rotate left

ACC

32 bits to ACC

C

Shift Operations

2-47Central Processing Unit

Table 2−11. Shift Operations (Continued)

Operation Type Illustration

Rotate ACC right by 1 bit. Bit 0 of ACC
fills the carry bit (C). C fills bit 31 of ACC.
Syntax:

ROR ACC
Rotate right

ACC

32 bits to ACC

C

Logical right shift of ACC:P.
Syntaxes:

LSR64 ACC:P, 1...16
LSR64, ACC:P, T shift = T(5:0)

Shift right

ACC:P

64 bits to ACC:P

0

C
Last
bit out

Discard
other bits

Logical left shift of ACC:P.
Syntaxes:

LSL64 ACC:P, 1...16
LSL64 ACC:P, T shift = T(5:0)

Shift left 0

ACC:P

64 bits to ACC:P

C
Last
bit out

Discard
other bits

Arithmetic right shift of ACC:P.
Syntaxes:

ASR64 ACC:P, 1...16
ASR64, ACC:P, T shift = T(5:0)

Shift right

ACC:P

64 bits to ACC:P

Sign

C
Last
bit out

Discard
other bits

Conditional shift of ACC by 1 bit.
Syntaxes:

NORM ACC, aux++

NORM ACC, aux−�−

SUBCU ACC, loc

Shift left 0

ACC

32 bits to ACC

Discard

Shift Operations

 2-48

Table 2−11. Shift Operations (Continued)

Operation Type Illustration

Shift of P as per PM bits. Syntaxes:

ADD ACC, P

SUB ACC, P

CMP ACC, P

MAC P, loc, 0:pmem

MOV ACC, P

MOVA T, loc

MOVP T, loc

MOVS T, loc

MPYA P, loc, #16BitSigned

MPYA P, T, loc

MPYS P, T, loc

Shift left 0

P

32 bits to ALU

Shift right

32 bits to ALU

P

Discard

Sign Discard

For PM = 0:

For PM from 2−7:

For PM = 1: No shift

Shift Operations

2-49Central Processing Unit

Table 2−11. Shift Operations (Continued)

Operation Type Illustration

Store 16 LSBs of shifted P. P is shifted
as per the PM bits. The 16 LSBs of shifter
are stored. Syntax:

MOV loc16, P
Shift left 0

P

16 LSBs to ALU

Shift right

P

Discard

Sign Discard

16 LSBs to ALU

For PM = 0:

For PM from 2−7:

For PM = 1: No shift

Store 16 MSBs of shifted P. P is shifted
as per the PM bits. The result is shifted
right by 16 so that its 16 MSBs are in the
16 LSBs of the shifter. 16 LSBs of shifter
are stored. Syntax:

MOVH loc16, P

Shift left 0

P

Shift right

P

Discard

Sign Discard

For PM = 0:

For PM from 2−7:

Shift right by 16 Discard

16 LSBs to ALU

1)

2)

Shift right by 16 Discard

16 LSBs to ALU

1)

2)

For PM = 1: No shift

This page intentionally left blank.

 2-50

This page intentionally left blank.

3-1

CPU Interrupts and Reset

This chapter describes the available CPU interrupts and how they are handled
by the CPU. It also explains how to control those interrupts that can be con-
trolled through software. Finally, it describes how a hardware reset affects the
CPU.

Topic Page

3.1 CPU Interrupts Overview 3-2.

3.2 CPU Interrupt Vectors and Priorities 3-4.

3.3 Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT 3-6.

3.4 Standard Operation for Maskable Interrupts 3-11.

3.5 Nonmaskable Interrupts 3-17.

3.6 Illegal-Instruction Trap 3-22.

3.7 Hardware Reset (RS) 3-23.

Chapter 3

CPU Interrupts Overview

 3-2

3.1 CPU Interrupts Overview

Interrupts are hardware- or software-driven signals that cause the C28x CPU
to suspend its current program sequence and execute a subroutine. Typically,
interrupts are generated by peripherals or hardware devices that need to give
data to or take data from the C28x (for example, A/D and D/A converters and
other processors). Interrupts can also signal that a particular event has taken
place (for example, a timer has finished counting).

On the C28x, interrupts can be triggered by software (the INTR, OR IFR, or
TRAP instruction) or by hardware (a pin, an external peripheral, or on-chip
peripheral/logic). If hardware interrupts are triggered at the same time, the
C28x services them according to a set priority ranking.

Some 28x devices include a peripheral interrupt expansion (PIE) module that
multiplexes interrupts from a number of peripherals into a single CPU interrupt.
The PIE module provides additional control before an interrupt reaches the
C28x CPU. See the TMS320C8x System and Interrupts Reference Guide
(literature number SPRU078) for more details.

At the CPU level, each of the C28x interrupts, whether hardware or software,
can be placed in one of the following two categories:

� Maskable interrupts.These are interrupts that can be blocked (masked)
or enabled (unmasked) through software.

� Nonmaskable interrupts. These interrupts cannot be blocked. The C28x
will immediately approve this type of interrupt and branch to the corre-
sponding subroutine. All software-initiated interrupts are in this category.

The C28x handles interrupts in four main phases:

1) Receive the interrupt request. Suspension of the current program se-
quence must be requested by a software interrupt (from program code) or
a hardware interrupt (from a pin or an on-chip device).

2) Approve the interrupt. The C28x must approve the interrupt request. If
the interrupt is maskable, certain conditions must be met in order for the
C28x to approve it. For nonmaskable hardware interrupts and for software
interrupts, approval is immediate.

3) Prepare for the interrupt service routine and save register values.
The main tasks performed in this phase are:

� Complete execution of the current instruction and flush from the pipe-
line any instructions that have not reached the decode 2 phase.

� Automatically save most of the current program context by saving the
following registers to the stack: ST0, T, AL, AH, PL, PH, AR0, AR1, DP,
ST1, DBGSTAT, PC, and IER.

CPU Interrupts Overview

3-3CPU Interrupts and Reset

� Fetch the interrupt vector and load it into the program counter (PC).
For devices with a PIE module, the vector fetched will depend on the
setting of the PIE enable and flag registers.

4) Execute the interrupt service routine. The C28x branches to its corre-
sponding subroutine called an interrupt service routine (ISR). The C28x
branches to the address (vector) you store at a predetermined vector loca-
tion and executes the ISR you have written.

CPU Interrupt Vectors and Priorities

 3-4

3.2 CPU Interrupt Vectors and Priorities

The C28x supports 32 CPU interrupt vectors, including the reset vector. Each
vector is a 22-bit address that is the start address for the corresponding inter-
rupt service routine (ISR). Each vector is stored in 32 bits at two consecutive
addresses. The location at the lower address holds the 16 least significant bits
(LSBs) of the vector. The location at the higher address holds the 6 most signif-
icant bits (MSBs) right-justified. When an interrupt is approved, the 22-bit vec-
tor is fetched, and the 10 MSBs at the higher address are ignored.

For devices with a PIE module, this table is re-mapped and expanded into the
PIE vector table.

Table 3−1 lists the available CPU interrupt vectors and their locations. The ad-
dresses are shown in hexadecimal form. The table also shows the priority of
each of the hardware interrupts.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 3−1. Interrupt Vectors and Priorities

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Absolute Address (hexadecimal) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Hardware
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
Vector ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
VMAP = 0 ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
VMAP = 1� ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

Hardware
Priority ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Description

ÁÁÁÁÁ
ÁÁÁÁÁ

RESET ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0000 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFC0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 (highest) ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Reset

ÁÁÁÁÁ
ÁÁÁÁÁ

INT1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0002
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFC2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0004
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFC4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

6
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 2ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0006
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFC6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 3

ÁÁÁÁÁ
ÁÁÁÁÁ

INT4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0008 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFC8 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 4

ÁÁÁÁÁ
ÁÁÁÁÁ

INT5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 000A ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFCA ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 5
ÁÁÁÁÁ
ÁÁÁÁÁ

INT6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 000C
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFCC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

10
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 000E
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFCE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

11
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 7

ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0010 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFD0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 8

ÁÁÁÁÁ
ÁÁÁÁÁ

INT9 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0012 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFD2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

13 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 9

ÁÁÁÁÁ
ÁÁÁÁÁ

INT10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0014 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFD4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 10
ÁÁÁÁÁ
ÁÁÁÁÁ

INT11
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0016
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFD6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 11
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0018
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFD8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 12

ÁÁÁÁÁ
ÁÁÁÁÁ

INT13 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 001A ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFDA ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

17 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 13

ÁÁÁÁÁ
ÁÁÁÁÁ

INT14 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 001C ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3F FFDC ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

18 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable interrupt 14

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

� For C28x catalog devices, VMAP = 1 at reset.
� Interrupts DLOGINT and RTOSINT are generated by the emulation logic internal to the CPU.

CPU Interrupt Vectors and Priorities

3-5CPU Interrupts and Reset

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 3−1. Interrupt Vectors and Priorities (Continued)
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁHardware

Priority

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Absolute Address (hexadecimal)ÁÁÁÁÁ
ÁÁÁÁÁ

Vector
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Hardware
Priority

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

VMAP = 1�ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

VMAP = 0
ÁÁÁÁÁ
ÁÁÁÁÁ

Vector
ÁÁÁÁÁ
ÁÁÁÁÁ

DLOGINT�
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 001E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFDE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

19 (lowest)
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable data log interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

RTOSINT�
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0020
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFE0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Maskable real-time operating
system interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0022
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFE2
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁÁ
ÁÁÁÁÁ

NMI ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0024 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFE4 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Nonmaskable interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

ILLEGAL ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0026 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFE6 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Illegal-instruction trap

ÁÁÁÁÁ
ÁÁÁÁÁ

USER1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0028 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFE8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ

USER2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 002A
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFEA
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

USER3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 002C
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFEC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 002E ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFEE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0030 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFF0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0032 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFF2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ

USER7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0034
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFF4
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

USER8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0036
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFF6
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER9 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 0038 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFF8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 003A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFFA ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

USER11 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 003C ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFFC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

− ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ

USER12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00 003E
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3F FFFE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

� For C28x catalog devices, VMAP = 1 at reset.
� Interrupts DLOGINT and RTOSINT are generated by the emulation logic internal to the CPU.

The vector table can be mapped to the top or bottom of program space, de-
pending on the value of the vector map bit (VMAP) in status register ST1. (ST1
is described in section 2.4 on page 2-34.) If the VMAP bit is 0, the vectors are
mapped beginning at address 00 000016. If the VMAP bit is 1, the vectors are
mapped beginning at address 3F FFC016. Table 3−1 lists the absolute ad-
dresses for VMAP = 0 and VMAP = 1.

The VMAP bit can be set by the SETC VMAP instruction and cleared by the
CLRC VMAP instruction. The reset value of VMAP is 1.

Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

 3-6

3.3 Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

INT1−INT14 are 14 general-purpose interrupts. DLOGINT (the data log inter-
rupt) and RTOSINT (the real-time operating system interrupt) are available for
emulation purposes. These interrupts are supported by three dedicated regis-
ters: the CPU interrupt flag register (IFR), the CPU interrupt enable register
(IER), and the CPU debug interrupt enable register (DBGIER).

The 16-bit IFR contains flag bits that indicate which of the corresponding inter-
rupts are pending (waiting for approval from the CPU). The external input lines
INT1−INT14 are sampled at every CPU clock cycle. If an interrupt signal is rec-
ognized, the corresponding bit in the IFR is set and latched. For DLOGINT or
RTOSINT, a signal sent by the CPU on-chip analysis logic causes the corre-
sponding flag bit to be set and latched. You can set one or more of the IFR bits
at the same time by using the OR IFR instruction. More details about the IFR
are given in section 3.3.1. The on-chip analysis resources are introduced in
Chapter 7.

The interrupt enable register (IER) and the debug interrupt enable register
(DBGIER) each contain bits for individually enabling or disabling the maskable
interrupts. To enable one of the interrupts in the IER, you set the corresponding
bit in the IER; to enable the same interrupt in the DBGIER, you set the corre-
sponding bit in the DBGIER. The DBGIER indicates which interrupts can be
serviced when the CPU is in the real-time emulation mode. The IER and the
DBGIER are discussed more in section 3.3.2. Real-time mode is discussed in
section 7.4.2 on page 7-9.

The maskable interrupts also share bit 0 in status register ST1. This bit, the
interrupt global mask bit (INTM), is used to globally enable or globally disable
these interrupts. When INTM = 0, these interrupts are globally enabled. When
INTM = 1, these interrupts are globally disabled. You can set and clear INTM
with the SETC INTM and CLRC INTM instructions, respectively. ST1 is de-
scribed in section 2.4 on page 2-34.

After a flag has been latched in the IFR, the corresponding interrupt is not serv-
iced until it is appropriately enabled by two of the following: the IER, the
DBGIER, and the INTM bit. As shown in Table 3−2, the requirements for enab-
ling the maskable interrupts depend on the interrupt-handling process used.
In the standard process, which occurs in most circumstances, the DBGIER is
ignored. When the C28x is in real-time emulation mode and the CPU is halted,
a different process is used. In this special case, the DBGIER is used and the
INTM bit is ignored. (If the DSP is in real-time mode and the CPU is running,
the standard interrupt-handling process applies.)

Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

3-7CPU Interrupts and Reset

Once an interrupt has been requested and properly enabled, the CPU pre-
pares for and then executes the corresponding interrupt service routine. For
a detailed description of this process, see section 3.4.

Table 3−2. Requirements for Enabling a Maskable Interrupt

Interrupt-Handling Process Interrupt Enabled If ...

Standard INTM = 0 and bit in IER is 1

DSP in real-time mode and CPU halted Bit in IER is 1 and bit in DBGIER is 1

As an example of varying interrupt-enable requirements, suppose you want
interrupt INT5 enabled. This corresponds to bit 4 in the IER and bit 4 in the
DBGIER. Usually, INT5 is enabled if INTM = 0 and IER(4) = 1. In real-time
emulation mode with the CPU halted, INT5 is enabled if IER(4) = 1 and
DBGIER(4) = 1.

3.3.1 CPU Interrupt Flag Register (IFR)

Figure 3−1 shows the IFR. If a maskable interrupt is pending (waiting for ap-
proval from the CPU), the corresponding IFR bit is 1; otherwise, the IFR bit is
0. To identify pending interrupts, use the PUSH IFR instruction and then test
the value on the stack. Use the OR IFR instruction to set IFR bits, and use the
AND IFR instruction to clear pending interrupts. When a hardware interrupt is
serviced, or when an INTR instruction is executed, the corresponding IFR bit
is cleared. All pending interrupts are cleared by the AND IFR, #0 instruction
or by a hardware reset.

Notes:

When an interrupt is requested by the TRAP instruction, if the corresponding
IFR bit is set, the CPU does not clear it automatically. If an application re-
quires that the IFR bit be cleared, the bit must be cleared in the interrupt ser-
vice routine.

Figure 3−1. Interrupt Flag Register (IFR)

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁ

Á
RTOSINTÁÁÁÁÁ

ÁÁÁÁÁ
DLOGINTÁÁÁÁ

ÁÁÁÁ
INT14ÁÁÁÁÁ
ÁÁÁÁÁ

INT13 ÁÁÁÁ
ÁÁÁÁ

INT12 ÁÁÁÁ
ÁÁÁÁ

INT11ÁÁÁÁÁ
ÁÁÁÁÁ

INT10 ÁÁÁÁ
ÁÁÁÁ

INT9 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁ
ÁÁÁÁÁ

INT7 ÁÁÁÁ
ÁÁÁÁ

INT6ÁÁÁÁÁ
ÁÁÁÁÁ

INT5 ÁÁÁÁ
ÁÁÁÁ

INT4 ÁÁÁÁ
ÁÁÁÁ

INT3ÁÁÁÁÁ
ÁÁÁÁÁ

INT2 ÁÁÁÁ
ÁÁÁÁ

INT1 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R = Read access; W = Write access; value following dash (−) is value after reset. ÁÁ
ÁÁ

Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

 3-8

Bits 15 and 14 of the IFR correspond to the interrupts RTOSINT and DLOGINT:

RTOSINT Real-time operating system interrupt flag

Bit 15 RTOSINT = 0 RTOSINT is not pending.

RTOSINT = 1 RTOSINT is pending.

DLOGINT Data log interrupt flag

Bit 14 DLOGINT = 0 DLOGINT is not pending.

DLOGINT = 1 DLOGINT is pending.

For bits INT1−INT14, the following general description applies:

INTx Interrupt x flag (x = 1, 2, 3, ..., or 14)

Bit (x−1) INTx = 0 INTx is not pending.

INTx = 1 INTx is pending.

3.3.2 CPU Interrupt Enable Register (IER) and
CPU Debug Interrupt Enable Register (DBGIER)

Figure 3−2 shows the IER. To enable an interrupt, set its corresponding bit to
1. To disable an interrupt, clear its corresponding bit to 0. Two syntaxes of the
MOV instruction allow you to read from the IER and write to the IER. In addi-
tion, the OR IER instruction enables you to set IER bits, and the AND IER
instruction enables you to clear IER bits. When a hardware interrupt is serv-
iced, or when an INTR instruction is executed, the corresponding IER bit is
cleared. At reset, all the IER bits are cleared to 0, disabling all the correspond-
ing interrupts.

Note:

When an interrupt is requested by the TRAP instruction, if the corresponding
IER bit is set, the CPU does not clear it automatically. If an application re-
quires that the IER bit be cleared, the bit must be cleared in the interrupt ser-
vice routine.

Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

3-9CPU Interrupts and Reset

Figure 3−2. Interrupt Enable Register (IER)

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁ

Á
RTOSINTÁÁÁÁÁ

ÁÁÁÁÁ
DLOGINTÁÁÁÁ

ÁÁÁÁ
INT14ÁÁÁÁÁ
ÁÁÁÁÁ

INT13 ÁÁÁÁ
ÁÁÁÁ

INT12 ÁÁÁÁ
ÁÁÁÁ

INT11ÁÁÁÁÁ
ÁÁÁÁÁ

INT10 ÁÁÁÁ
ÁÁÁÁ

INT9 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁ
ÁÁÁÁÁ

INT7 ÁÁÁÁ
ÁÁÁÁ

INT6ÁÁÁÁÁ
ÁÁÁÁÁ

INT5 ÁÁÁÁ
ÁÁÁÁ

INT4 ÁÁÁÁ
ÁÁÁÁ

INT3ÁÁÁÁÁ
ÁÁÁÁÁ

INT2 ÁÁÁÁ
ÁÁÁÁ

INT1 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R = Read access; W = Write access; value following dash (−) is value after reset. ÁÁ
ÁÁ

Note:

When using the AND IER and OR IER instructions, make sure that they do
not modify the state of bit 15 (RTOSINT) unless a real-time operating system
is present.

Bits 15 and 14 of the IER enable or disable the interrupts RTOSINT and
DLOGINT:

RTOSINT Real-time operating system interrupt enable bit

Bit 15 RTOSINT = 0 RTOSINT is disabled.

RTOSINT = 1 RTOSINT is enabled.

DLOGINT Data log interrupt enable bit

Bit 14 DLOGINT = 0 DLOGINT is disabled.

DLOGINT = 1 DLOGINT is enabled.

For bits INT1−INT14, the following general description applies:

INTx Interrupt x enable bit (x = 1, 2, 3, ..., or 14)

Bit (x−1) INTx = 0 INTx is disabled.

INTx = 1 INTx is enabled.

Figure 3−3 shows the DBGIER, which is used only when the CPU is halted in
real-time emulation mode. An interrupt enabled in the DBGIER is defined as
a time-critical interrupt. When the CPU is halted in real-time mode, the only in-
terrupts that are serviced are time-critical interrupts that are also enabled in
the IER. If the CPU is running in real-time emulation mode, the standard inter-
rupt-handling process is used and the DBGIER is ignored.

Maskable Interrupts: INT1−INT14, DLOGINT, and RTOSINT

3-10

As with the IER, you can read the DBGIER to identify enabled or disabled inter-
rupts and write to the DBGIER to enable or disable interrupts. To enable an
interrupt, set its corresponding bit to 1. To disable an interrupt, set its corre-
sponding bit to 0. Use the PUSH DBGIER instruction to read from the DBGIER
and the POP DBGIER instruction to write to the DBGIER. At reset, all the
DBGIER bits are set to 0.

Figure 3−3. Debug Interrupt Enable Register (DBGIER)ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ15

ÁÁÁÁÁ
ÁÁÁÁÁ14

ÁÁÁÁ
ÁÁÁÁ13

ÁÁÁÁ
ÁÁÁÁ12

ÁÁÁÁÁ
ÁÁÁÁÁ11

ÁÁÁÁ
ÁÁÁÁ10

ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁÁ
ÁÁÁÁÁ8

Á
ÁÁÁ

ÁÁ
ÁÁ

RTOSINT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

DLOGINT
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INT14
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INT13
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT12
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INT11
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INT10
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT9
Á
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁ
ÁÁÁÁÁ

INT7 ÁÁÁÁ
ÁÁÁÁ

INT6 ÁÁÁÁ
ÁÁÁÁ

INT5 ÁÁÁÁÁ
ÁÁÁÁÁ

INT4 ÁÁÁÁ
ÁÁÁÁ

INT3 ÁÁÁÁ
ÁÁÁÁ

INT2ÁÁÁÁÁ
ÁÁÁÁÁ

INT1 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNote: R = Read access; W = Write access; value following dash (−) is value after reset. Á

Bits 15 and 14 of the DBGIER enable or disable the interrupts RTOSINT and
DLOGINT:

RTOSINT Real-time operating system interrupt debug enable bit

Bit 15 RTOSINT = 0 RTOSINT is disabled.

RTOSINT = 1 RTOSINT is enabled.

DLOGINT Data log interrupt debug enable bit

Bit 14 DLOGINT = 0 DLOGINT is disabled.

DLOGINT = 1 DLOGINT is enabled.

For bits INT1−INT14, the following general description applies:

INTx Interrupt x debug enable bit (x = 1, 2, 3, ..., or 14)

Bit (x−1) INTx = 0 INTx is disabled.

INTx = 1 INTx is enabled.

Standard Operation for Maskable Interrupts

3-11CPU Interrupts and Reset

3.4 Standard Operation for Maskable Interrupts

The flow chart in Figure 3−4 shows the standard process for handling inter-
rupts. Section 7.4.2 on page 7-9 contains information on handling interrupts
when the DSP is in real-time mode and the CPU is halted. When more than
one interrupt is requested at the same time, the C28x services them one after
another according to their set priority ranking. See the priorities in Table 3−1
on page 3-4.

Figure 3−4 is not meant to be an exact representation of how an interrupt is
handled. It is a conceptual model of the important events.

Standard Operation for Maskable Interrupts

 3-12

Figure 3−4. Standard Operation for CPU Maskable Interrupts

Interrupt request sent to CPU

Set corresponding IFR flag bit.

Interrupt enabled by
INTM bit?

Clear corresponding IFR bit.

Yes

No

Clear corresponding IER bit.

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

Execute interrupt service routine.

Program continues

Increment and temporarily store PC.

Fetch interrupt vector.

Perform automatic context save.

Increment SP by 1.

Load PC with fetched vector.

Empty pipeline.

This sequence
protected from interrupts

Interrupt enabled in
IER?

Yes

No

Standard Operation for Maskable Interrupts

3-13CPU Interrupts and Reset

What following list explains the steps shown in Figure 3−4:

1) Interrupt request sent to CPU. One of the following events occurs:

� One of the pins INT1−INT14 is driven low by an external event, periph-
eral or PIE interrupt request..

� The CPU emulation logic sends to the CPU a signal for DLOGINT or
RTOSINT.

� One of the interrupts INT1−INT14, DLOGINT, and RTOSINT is initi-
ated by way of the OR IFR instruction.

2) Set corresponding IFR flag bit. When the CPU detects a valid interrupt
in step 1, it sets and latches the corresponding flag in the interrupt flag reg-
ister (IFR). This flag stays latched even if the interrupt is not approved by
the CPU in step 3. The IFR is explained in detail in section 3.3.1.

3) Is the interrupt enabled in IER? Is the interrupt enabled by INTM bit?
The CPU approves the interrupt only if the following conditions are true:

� The corresponding bit in the IER is 1.
� The INTM bit in ST1 is 0.

Once an interrupt has been enabled and then approved by the CPU, no
other interrupts can be serviced until the CPU has begun executing the in-
terrupt service routine for the approved interrupt (step 13). The IER is de-
scribed in section 3.3.2. ST1 is described in section 2.4 on page 2-34.

4) Clear corresponding IFR bit. Immediately after the interrupt is approved,
its IFR bit is cleared. If the interrupt signal is kept low, the IFR register bit
will be set again. However, the interrupt is not immediately serviced again.
The CPU blocks new hardware interrupts until the interrupt service routine
(ISR) begins. In addition, the IER bit is cleared (in step 10) before the ISR
begins; therefore, an interrupt from the same source cannot disturb the
ISR until the IER bit is set again by the ISR.

5) Empty the pipeline. The CPU completes any instructions that have
reached or passed their decode 2 phase in the instruction pipeline. Any
instructions that have not reached this phase are flushed from the pipeline.

6) Increment and temporarily store PC. The PC is incremented by 1 or 2,
depending on the size of the current instruction. The result is the return
address, which is temporarily saved in an internal hold register. During the
automatic context save (step 9), the return address is pushed onto the
stack.

Standard Operation for Maskable Interrupts

 3-14

7) Fetch interrupt vector. The PC is filled with the address of the appropri-
ate interrupt vector, and the vector is fetched from that location. To
determine which vector address has been assigned to each of the inter-
rupts, see section 3.2, Interrupt Vectors, on page 3-4 or, if your device
uses a PIE module, see the System and Interrupts Reference Guide for
your specific device.

8) Increment SP by 1. The stack pointer (SP) is incremented by 1 in prepara-
tion for the automatic context save (step 9). During the automatic context
save, the CPU performs 32-bit accesses, and the CPU expects 32-bit ac-
cesses to be aligned to even addresses by the memory wrapper. Incre-
menting SP by 1 ensures that the first 32-bit access does not overwrite the
previous stack value.

9) Perform automatic context save. A number of register values are saved
automatically to the stack. These registers are saved in pairs; each pair
is saved in a single 32-bit operation. At the end of each 32-bit save opera-
tion, the SP is incremented by 2. Table 3−3 shows the register pairs and
the order in which they are saved. The CPU expects all 32-bit saves to be
even-word aligned by the memory wrapper. As shown in the table, the SP
is not affected by this alignment.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 3−3. Register Pairs Saved and SP Positions for Context Saves

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Save
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 0 of Storage Address

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Save
Operation� ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

Register
Pairs ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
SP Starts at Odd Address ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
SP Starts at Even Address

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1 ← SP position before step 8 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1

1st ST0 0 0 ← SP position before step 8

T 1 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2nd ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

AL ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

AH ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1

3rd PL� 0 0

PH 1 1

4th AR0 0 0

AR1 1 1

5th ST1 0 0

DP 1 1

Standard Operation for Maskable Interrupts

3-15CPU Interrupts and Reset

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 3−3. Register Pairs Saved and SP Positions for Context Saves (Continued)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 0 of Storage AddressÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁRegister

Pairs

ÁÁÁÁÁ
ÁÁÁÁÁSave

Operation�
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

SP Starts at Even Address
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
SP Starts at Odd Address

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register
Pairs

ÁÁÁÁÁ
ÁÁÁÁÁ

Save
Operation�

ÁÁÁÁÁ
ÁÁÁÁÁ

6th
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IER
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DBGSTAT§
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
1

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1

7th Return address
(low half)

0 0

Return address
(high half)

1 1

0 ← SP position after save 0

1 1 ← SP position after save

� All registers are saved as pairs, as shown.
� The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
§ The DBGSTAT register contains special emulation information.

10) Clear corresponding IER bit. After the IER register is saved on the stack
in step 9, the CPU clears the IER bit that corresponds to the interrupt being
handled. This prevents reentry into the same interrupt. If you want to nest
occurrences of the interrupt, have the ISR set that IER bit again.

11) Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these
bits are in status register ST1. By setting INTM to 1, the CPU prevents
maskable interrupts from disturbing the ISR. If you wish to nest interrupts,
have the ISR clear the INTM bit. By setting DBGM to 1, the CPU prevents
debug events from disturbing time-critical code in the ISR. If you do not
want debug events blocked, have the ISR clear DBGM.

The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates
within a new context.

12) Load PC with fetched vector. The PC is loaded with the interrupt vector
that was fetched in step 7. The vector forces program control to the ISR.

13) Execute interrupt service routine. Here is where the CPU executes the
program code you have prepared to handle the interrupt. A typical ISR is
shown in Example 3−1.

Although a number of register values are saved automatically in step 10, if
the ISR uses other registers, you may need to save the contents of these
registers at the beginning of the ISR. These values must then be restored
before the return from the ISR. The ISR in Example 3−1 saves and re-
stores auxiliary registers AR1H:AR0H, XAR2−XAR7, and the temporary
register XT.

Standard Operation for Maskable Interrupts

 3-16

If you want the ISR to inform a peripheral that the interrupt is being serv-
iced, you can use the IACK instruction to send an interrupt acknowledge
signal. The IACK instruction accepts a 16-bit constant as an operand. For
a detailed description of the IACK instruction, see Chapter 6, C28x As-
sembly Language Instructions.

14) Program continues. If the interrupt is not approved by the CPU, the inter-
rupt is ignored, and the program continues uninterrupted. If the interrupt
is approved, its interrupt service routine is executed and the program con-
tinues where it left off (at the return address).

Example 3−1. Typical ISR

C28x Full Context Save/Restore

INTX: .; 8 cycles
PUSH AR1H:AR0H ; 32-bit
PUSH XAR2 ; 32-bit
PUSH XAR3 ; 32-bit
PUSH XAR4 ; 32-bit
PUSH XAR5 ; 32-bit
PUSH XAR6 ; 32-bit
PUSH XAR7 ; 32-bit
PUSH XT ; 32-bit
; +8 = 16 cycles
.
.
.
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP XAR1H;AR0H
IRET
; 16 cycles

Nonmaskable Interrupts

3-17CPU Interrupts and Reset

3.5 Nonmaskable Interrupts

Nonmaskable interrupts cannot be blocked by any of the enable bits (the INTM
bit, the DBGM bit, and enable bits in the IFR, IER, or DBGIER). The C28x im-
mediately approves this type of interrupt and branches to the corresponding
interrupt service routine. There is one exception to this rule: When the CPU
is halted in stop mode (an emulation mode), no interrupts are serviced. Stop
mode is described in section 7.4.1 on page 7-7.

The C28x nonmaskable interrupts include:

� Software interrupts (the INTR and TRAP instructions).
� Hardware interrupt NMI
� Illegal-instruction trap
� Hardware reset interrupt (RS)

The software interrupt instructions and NMI are described in this section. The
illegal-instruction trap and reset are described in sections 3.6 and 3.7, respec-
tively.

3.5.1 INTR Instruction

You can use the INTR instruction to initiate one of the following interrupts by
name: INT1−INT14, DLOGINT, RTOSINT and NMI. For example, you can
execute the interrupt service routine for INT1 by using the following instruction:

INTR INT1

Once an interrupt is initiated by the INTR instruction, how it is handled depends
on which interrupt is specified:

� INT1−INT14, DLOGINT, and RTOSINT. These maskable interrupts have
corresponding flag bits in the IFR. When a request for one of these inter-
rupts is received at an external pin, the corresponding IFR bit is set and
the interrupt must be enabled to be serviced. In contrast, when one of
these interrupts is initiated by the INTR instruction, the IFR flag is not set,
and the interrupt is serviced regardless of the value of any enable bits.
However, in other respects, the INTR instruction and the hardware request
are the same. For example, both clear the IFR bit that corresponds to the
requested interrupt. For more details, see section 3.4 on page 3-11.

� NMI. Because this interrupt is nonmaskable, a hardware request at a pin
and a software request with the INTR instruction lead to the same events.
These events are identical to those that take place during a TRAP instruc-
tion (see section 3.5.2).

Chapter 6, C28x Assembly Language Instructions, contains a detailed de-
scription of the INTR instruction.

Nonmaskable Interrupts

 3-18

3.5.2 TRAP Instruction

You can use the TRAP instruction to initiate any interrupt, including one of the
user-defined software interrupts (see USER1−USER12 in Table 3−1 on page
3-4). The TRAP instruction refers to one of the 32 interrupts by a number from
0 to 31. For example, you can execute the interrupt service routine for INT1
by using the following instruction:
TRAP #1

Regardless of whether the interrupt has bits set in the IFR and IER, neither the
IFR nor the IER is affected by this instruction. Figure 3−5 shows a functional
flow chart for an interrupt initiated by the TRAP instruction. For more details
about the TRAP instruction, see Chapter 6, C28x Assembly Language Instruc-
tions.

Note:

The TRAP #0 instruction does not initiate a full reset. It only forces execution
of the interrupt service routine that corresponds to the RESET interrupt vec-
tor.

Figure 3−5. Functional Flow Chart for an Interrupt Initiated by the TRAP Instruction

TRAP instruction fetched

Increment and temporarily store PC.

Fetch interrupt vector.

Perform automatic context save.

Increment SP by 1.

Empty the pipeline.

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

Execute interrupt service routine.

Program continues

Load PC with fetched vector.

This sequence
protected from

INTM bit, IFR,

interrupts

IER, and DBGIER
ignored and not affected

Nonmaskable Interrupts

3-19CPU Interrupts and Reset

The following lists explains the steps shown in Figure 3−5:

1) TRAP instruction fetched. The CPU fetches the TRAP instruction from
program memory. The desired interrupt vector has been specified as an
operand and is now encoded in the instruction word. At this stage, no other
interrupts can be serviced until the CPU begins executing the interrupt ser-
vice routine (step 9).

2) Empty the pipeline. The CPU completes any instructions that have
reached or passed the decode 2 phase of the pipeline. Any instructions
that have not reached this phase are flushed from the pipeline.

3) Increment and temporarily store PC. The PC is incremented by 1. This
value is the return address, which is temporarily saved in an internal hold
register. During the automatic context save (step 6), the return address is
pushed onto the stack.

4) Fetch interrupt vector. The PC is set to point to the appropriate vector
location (based on the VMAP bit and the interrupt), and the vector located
at the PC address is loaded into the PC. (To determine which vector ad-
dress has been assigned to each of the interrupts, see section 3.2, Inter-
rupt Vectors, on page 3-4.)

5) Increment SP by 1. The stack pointer (SP) is incremented by 1 in prepara-
tion for the automatic context save (step 6). During the automatic context
save, the CPU performs 32-bit accesses, which are aligned to even ad-
dresses. Incrementing SP by 1 ensures that the first 32-bit access will not
overwrite the previous stack value.

6) Perform automatic context save. A number of register values are saved
automatically to the stack. These registers are saved in pairs; each pair
is saved in a single 32-bit operation. At the end of each 32-bit operation,
the SP is incremented by 2. Table 3−3 shows the register pairs and the or-
der in which they are saved. All 32-bit saves are even-word aligned. As
shown in the table, the SP is not affected by this alignment.

Nonmaskable Interrupts

 3-20

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 3−4. Register Pairs Saved and SP Positions for Context Saves
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSave

ÁÁÁÁÁÁ
ÁÁÁÁÁÁRegister

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 0 of Storage Address
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Save
Operation�

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register
Pairs

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

SP Starts at Odd Address
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

SP Starts at Even Address
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ1 ← SP position before step 5

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ1

1st ST0 0 0 ← SP position before step 5

T 1 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2nd ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

AL ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

AH
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1

3rd PL� 0 0

PH 1 1

4th AR0 0 0

AR1 1 1

5th ST1 0 0

DP 1 1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

6th
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IER
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

DBGSTAT§
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1

7th Return address
(low half)

0 0

Return address
(high half)

1 1

0 ← SP position after save 0

1 1 ← SP position after save

� All registers are saved as pairs, as shown.
� The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
§ The DBGSTAT register contains special emulation information.

7) Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these
bits are in status register ST1 (described in section 2.4 on page 2-34). By
setting INTM to 1, the CPU prevents maskable interrupts from disturbing
the ISR. If you wish to nest interrupts, have the ISR clear the INTM bit. By
setting DBGM to 1, the CPU prevents debug events from disturbing time-
critical code in the ISR. If you do not want debug events blocked, have the
ISR clear DBGM.

Nonmaskable Interrupts

3-21CPU Interrupts and Reset

The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates
within a new context.

8) Load PC with fetched vector. The PC is loaded with the interrupt vector
that was fetched in step 4. The vector forces program control to the ISR.

9) Execute interrupt service routine. The CPU executes the program code
you have prepared to handle the interrupt. You may wish to have the inter-
rupt service routine (ISR) save register values in addition to those saved
in step 6. A typical ISR is shown in Example 3−1 on page 3-16.

If you want the ISR to inform external hardware that the interrupt is being
serviced, you can use the IACK instruction to send an interrupt acknowl-
edge signal. The IACK instruction accepts a 16-bit constant as an operand
and drives this 16-bit value on the 16 least significant lines of the data-write
bus, DWDB(15:0). For a detailed description of the IACK instruction, see
Chapter 6, C28x Assembly Language Instructions.

10) Program continues. After the interrupt service routine is completed, the
program continues where it left off (at the return address).

3.5.3 Hardware Interrupt NMI

An interrupt can be requested by way the NMI input pin, which must be driven
low to initiate the interrupt. Although NMI cannot be masked, there are some
debug execution states in which NMI is not serviced (see section 7.4,
Execution Control Modes, on page 7-7). For more details on real-time mode,
see section 7.4.2 on page 7-9. Once a valid request is detected on the NMI pin,
the CPU handles the interrupt in the same manner as shown for the TRAP
instruction (see section 3.5.2).

Illegal-Instruction Trap

 3-22

3.6 Illegal-Instruction Trap

Any one of the following three events causes an illegal-instruction trap:

� An invalid instruction is decoded (this includes invalid addressing modes).

� The opcode value 000016 is decoded. This opcode corresponds to the
ITRAP0 instruction.

� The opcode value FFFF16 is decoded. This opcode corresponds to the
ITRAP1 instruction.

An illegal-instruction trap cannot be blocked, not even during emulation. Once
initiated, an illegal-instruction trap operates the same as a TRAP #19 instruc-
tion. The handling of an interrupt initiated by the TRAP instruction is described
in section 3.5.2. As part of its operation, the illegal-instruction trap saves the
return address on the stack. Thus, you can detect the offending address by
examining this saved value. For more information about the TRAP instruction,
see Chapter 6, C28x Assembly Language Instructions.

Hardware Reset (RS)

3-23CPU Interrupts and Reset

3.7 Hardware Reset (RS)

When asserted, the reset input signal (RS) places the CPU into a known state.
As part of a hardware reset, all current operations are aborted, the pipeline is
flushed, and the CPU registers are reset as shown in Table 3−5. Then the
RESET interrupt vector is fetched and the corresponding interrupt service rou-
tine is executed. For the reset condition of signals, see the data sheet for your
particular C28x DSP. Also see the your data sheet for specific information on
the process for resetting your DSP. Although RS cannot be masked, there are
some debug execution states in which RS is not serviced (see section 7.4,
Execution Control Modes, on page 7-7).

Table 3−5. Registers After Reset

Register Bit(s) Value After Reset Comments

ACC all 0000�000016

XAR0 all 0000 000016

XAR1 all 0000 000016

XAR2 all 0000 000016

XAR3 all 0000 000016

XAR4 all 0000 000016

XAR5 all 0000 000016

XAR6 all 0000�000016

XAR7 all 0000�000016

DP all 000016 DP points to data page 0.

IFR 16 bits 000016 There are no pending
interrupts. All interrupts
pending at the time of
reset have been cleared.

IER 16 bits 000016 Maskable interrupts are
disabled in the IER.

DBGIER all 000016 Maskable interrupts are
disabled in the DBGIER.

Note: The registers listed in this table are introduced in section 2.2, CPU Registers, on page
2-4.

Hardware Reset (RS)

 3-24

Table 3−5. Registers After Reset (Continued)

Register Bit(s) Value After Reset Comments

P all 0000�000016

PC all 3F�FFC016 PC is loaded with the
reset interrupt vector at
program-space address
00�000016 or 3F��FFC016.

RPC all 000016

SP all SP = 0x400 SP points to address
0400.

ST0 0: SXM 0 Sign extension is
suppressed.

1: OVM 0 Overflow mode is off.

2: TC 0

3: C 0

4: Z 0

5: N 0

6: V 0

7−9: PM 0002 The product shift mode is
set to left-shift-by-1.

10−15: OVC 00 00002

Note: The registers listed in this table are introduced in section 2.2, CPU Registers, on page
2-4.

Hardware Reset (RS)

3-25CPU Interrupts and Reset

Table 3−5. Registers After Reset (Continued)

Register Bit(s) Value After Reset Comments

ST1� 0: INTM 1 Maskable interrupts are
globally disabled. They
cannot be serviced unless
the C28x is in real-time
mode with the CPU
halted.

1: DBGM 1 Emulation accesses and
events are disabled.

2: PAGE0 0 PAGE0 stack addressing
mode is enabled. PAGE0
direct addressing mode is
disabled.

3: VMAP 1 The interrupt vectors are
mapped to program-
memory addresses
3F�FFC016−3F�FFFF16.

4: SPA 0

5: LOOP 0

6: EALLOW 0 Access to emulation regis-
ters is disabled.

7: IDLESTAT 0

8: AMODE 0 C27x/C28x addressing
mode

9: OBJMODE 0 C27x object mode

10: Reserved 0

11: M0M1MAP 1

Note: The registers listed in this table are introduced in section 2.2, CPU Registers, on page
2-4.

Hardware Reset (RS)

 3-26

Table 3−5. Registers After Reset (Continued)

Register Bit(s) Value After Reset Comments

12: XF 0 XFS output signal is low

13−15: ARP 0002 ARP points to AR0.

XT all 0000 000032

Note: The registers listed in this table are introduced in section 2.2, CPU Registers, on page
2-4.

4-1

Pipeline

This chapter explains the operation of the C28x instruction pipeline. The pipe-
line contains hardware that prevents reads and writes at the same register or
data-memory location from happening out of order. However, you can in-
crease the efficiency of your programs if you take into account the operation
of the pipeline. In addition, you should be aware of two types of pipeline con-
flicts the pipeline does not protect against and how you can avoid them (see
section 4.5).

For more information about the instructions shown in examples throughout
this chapter, see Chapter 6, C28x Assembly Language Instructions.

Topic Page

4.1 Pipelining of Instructions 4-2.

4.2 Visualizing Pipeline Activity 4-7.

4.3 Freezes in Pipeline Activity 4-10.

4.4 Pipeline Protection 4-12.

4.5 Avoiding Unprotected Operations 4-16.

Chapter 4

Pipelining of Instructions

 4-2

4.1 Pipelining of Instructions

When executing a program, the C28x CPU performs these basic operations:

� Fetches instructions from program memory
� Decodes instructions
� Reads data values from memory or from CPU registers
� Executes instructions
� Writes results to memory or to CPU registers

For efficiency, the C28x performs these operations in eight independent
phases. Reads from memory are designed to be pipelined in two stages, which
correspond to the two pipeline phases used by the CPU for each memory-read
operation. At any time, there can be up to eight instructions being carried out,
each in a different phase of completion. Following are descriptions of the eight
phases in the order they occur. The address and data buses mentioned in
these descriptions are introduced in section 1.4.1 on page 1-9.

Fetch 1
(F1)

In the fetch 1 (F1) phase, the CPU drives a program-memory ad-
dress on the 22-bit program address bus, PAB(21:0).

Fetch 2
(F2)

In the fetch 2 (F2) phase, the CPU reads from program memory
by way of the program-read data bus, PRDB (31:0), and loads
the instruction(s) into an instruction-fetch queue.

Decode 1
(D1)

The C28x supports both 32-bit and 16-bit instructions and an
instruction can be aligned to an even or odd address. The
decode 1 (D1) hardware identifies instruction boundaries in the
instruction-fetch queue and determines the size of the next
instruction to be executed. It also determines whether the
instruction is a legal instruction.

Pipelining of Instructions

4-3Pipeline

Decode 2
(D2)

The decode 2 (D2) hardware requests an instruction from the
instruction-fetch queue. The requested instruction is loaded into
the instruction register, where decoding is completed. Once an
instruction reaches the D2 phase, it runs to completion. In this
pipeline phase, the following tasks are performed:

� If data is to be read from memory, the CPU generates the
source address or addresses.

� If data is to be written to memory, the CPU generates the
destination address.

� The address register arithmetic unit (ARAU) performs any
required modifications to the stack pointer (SP) or to an auxil-
iary register and/or the auxiliary register pointer (ARP).

� If a program-flow discontinuity (such as a branch or an
illegal-instruction trap) is required, it is taken.

Read 1
(R1)

If data is to be read from memory, the read 1 (R1) hardware
drives the address(es) on the appropriate address bus(es).

Read 2
(R2)

If data was addressed in the R1 phase, the read 2 (R2) hardware
fetches that data by way of the appropriate data bus(es).

Execute
(E)

In the execute (E) phase, the CPU performs all multiplier, shifter,
and ALU operations. This includes all the prime arithmetic and
logic operations involving the accumulator and product register.
For operations that involve reading a value, modifying it, and writ-
ing it back to the original location, the modification (typically an
arithmetic or a logical operation) is performed during the E phase
of the pipeline. Any CPU register values used by the multiplier,
shifter, and ALU are read from the registers at the beginning of
the E phase. A result that is to be written to a CPU register is writ-
ten to the register at the end of the E phase.

Write
(W)

If a transferred value or result is to be written to memory, the write
occurs in the write (W) phase. The CPU drives the destination
address, the appropriate write strobes, and the data to be written.
The actual storing, which takes at least one more clock cycle, is
handled by memory wrappers or peripheral interface logic and is
not visible as a part of the CPU pipeline.

Pipelining of Instructions

 4-4

Although every instruction passes through the eight phases, not every phase
is active for a given instruction. Some instructions complete their operations
in the decode 2 phase, others in the execute phase, and still others in the write
phase. For example, instructions that do not read from memory perform no
operations in the read phases, and instructions that do not write to memory
perform no operation in the write phase.

Because different instructions perform modifications to memory and registers
during different phases of their completion, an unprotected pipeline could lead
to reads and writes at the same location happening out of the intended order.
The CPU automatically adds inactive cycles to ensure that these reads and
writes happen as intended. For more details about pipeline protection, see
section 4.4 on page 4-12.

4.1.1 Decoupled Pipeline Segments

The fetch 1 through decode 1 (F1−D1) hardware acts independently of the
decode 2 through write (D2−W) hardware. This allows the CPU to continue
fetching instructions when the D2−W phases are halted. It also allows fetched
instructions to continue through their D2−W phases when fetching of new
instructions is delayed. Events that cause portions of the pipeline to halt are
described in section 4.3.

Instructions in their fetch 1, fetch 2, and decode 1 phases are discarded if an
interrupt or other program-flow discontinuity occurs. An instruction that reach-
es its decode 2 phase always runs to completion before any program-flow
discontinuity is taken.

4.1.2 Instruction-Fetch Mechanism

Certain branch instructions perform prefetching. The first few instructions of
the branch destination will be fetched but not allowed to reach DZ until it is
known whether the discontinuity will be taken. The instruction-fetch mecha-
nism is the hardware for the F1 and F2 pipeline phases. During the F1 phase,
the mechanism drives an address on the program address bus (PAB). During
the F2 phase, it reads from the program-read data bus (PRDB). While an
instruction is read from program memory in the F2 phase, the address for the
next fetch is placed on the program address bus (during the next F1 phase).

The instruction-fetch mechanism contains an instruction-fetch queue of four
32-bit registers. During the F2 phase, the fetched instruction is added to the
queue, which behaves like a first-in, first-out (FIFO) buffer. The first instruction
in the queue is the first to be executed. The instruction-fetch mechanism per-
forms 32-bit fetches until the queue is full. When a program-flow discontinuity

Pipelining of Instructions

4-5Pipeline

(such as a branch or an interrupt) occurs, the queue is emptied. When the
instruction at the bottom of the queue reaches its D2 phase, that instruction
is passed to the instruction register for further decoding.

4.1.3 Address Counters FC, IC, and PC

Three program-address counters are involved in the fetching and execution
of instructions:

� Fetch counter (FC). The fetch counter contains the address that is driven
on the program address bus (PAB) in the F1 pipeline phase. The CPU con-
tinually increments the FC until the queue is full or the queue is emptied
by a program-flow discontinuity. Generally, the FC holds an even address
and is incremented by 2, to accommodate 32-bit fetches. The only excep-
tion to this is when the code after a discontinuity begins at an odd address.
In this case, the FC holds the odd address. After performing a16-bit fetch
at the odd address, the CPU increments the FC by 1 and resumes 32-bit
fetching at even addresses.

� Instruction counter (IC). After the D1 hardware determines the instruc-
tion size (16-bit or 32-bit), it fills the instruction counter (IC) with the ad-
dress of the next instruction to undergo D2 decoding. On an interrupt or
call operation, the IC value represents the return address, which is saved
to the stack, to auxiliary register XAR7, or to RPC.

� Program counter (PC). When a new address is loaded into the IC, the
previous IC value is loaded into the PC. The program counter (PC) always
contains the address of the instruction that has reached its D2 phase.

Example 4−1 shows the relationship between the pipeline and the address
counters. Instruction 1 has reached its D2 phase (it has been passed to the
instruction register). The PC points to the address from which instruction 1
was taken (00�005016). Instruction 2 has reached its D1 phase and will be
executed next (assuming no program-flow discontinuity flushes the instruc-
tion-fetch queue). The IC points to the address from which instruction 2 was
taken (00�005116). Instruction 3 is in its F2 phase. It has been transferred to
the instruction-fetch queue but has not been decoded. Instructions 4 and 5 are
each in their F1 phase. The FC address (00�005416) is being driven on the
PAB. During the next 32-bit fetch, Instructions 4 and 5 will be transferred from
addresses 00�005416 and 00�005516 to the queue.

Pipelining of Instructions

 4-6

Example 4−1. Relationship Between Pipeline and Address Counters FC, IC, and PC

IC

Program memory (32 bits wide)

Instruction 1Instruction 2

Instruction 3

Instruction 4Instruction 5

Instruction 6Instruction 7

Instruction 8

Instruction 9

Instruction 10Instruction 11

.

.

.

.

.

.

00�005116

00�005316

00�005516

00�005716

00�005916

00�005B16

00�005D16 00�005C16

00�005A16

00�005816

00�005616

00�005416

00�005216

00�005016 I C

Instruction 2

Instruction 3

Instruction-fetch queue (32 bits wide)

Instruction register (32 bits wide)

Instruction 1

FC

F1: Instructions 4 and 5

F2: Instruction 3

D1: Instruction 2

D2: Instruction 1

The remainder of this document refers almost exclusively to the PC. The FC
and the IC are visible in only limited ways. For example, when a call is executed
or an interrupt is initiated, the IC value is saved to the stack or to auxiliary regis-
ter XAR7.

Visualizing Pipeline Activity

4-7Pipeline

4.2 Visualizing Pipeline Activity

Consider Example 4−2, which lists eight instructions, I1−I8, and shows a
diagram of the pipeline activity for those instructions. The F1 column shows
addresses and the F2 column shows the instruction opcodes read at those
addresses. During an instruction fetch, 32 bits are read, 16 bits from the speci-
fied address and 16 bits from the following address. The D1 column shows
instructions being isolated in the instruction-fetch queue, and the D2 column
indicates address generation and modification of address registers. The
Instruction column shows the instructions that have reached the D2 phase.
The R1 column shows addresses, and the R2 column shows the data values
being read from those addresses. In the E column, the diagram shows results
being written to the low half of the accumulator (AL). In the W column, address
and a data values are driven simultaneously on the appropriate memory
buses. For example, in the last active W phase of the diagram, the address
00�020516 is driven on the data-write address bus (DWAB), and the data value
123416 is driven on the data-write data bus (DWDB).

The highlighted blocks in Example 4−2 indicate the path taken by the instruc-
tion ADD AL,*AR0++. That path can be summarized as follows:

Phase Activity Shown

F1 Drive address 00�004216 on the program address bus (PAB).

F2 Read the opcodes F347 and F348 from addresses 00�004216 and
00�004316, respectively.

D1 Isolate F348 in the instruction-fetch queue.

D2 Use XAR0 = 006616 to generate source address 0000�006616 and then
increment XAR0 to 006716.

R1 Drive address 00�006616 on the data-read data bus (DRDB).

R2 Read the data value 1 from address 0000 006616.

E Add 1 to content of AL (123016) and store result (123116) to AL.

W No activity

Visualizing Pipeline Activity

 4-8

Example 4−2. Diagramming Pipeline Activity

Address Opcode Instruction Initial Values

00�0040 F345 I1: MOV DP,#VarA ; DP = page that has VarA. VarA address = 00�0203

00�0041 F346 I2: MOV AL,@VarA ; Move content of VarA to AL. VarA = 1230

00�0042 F347 I3: MOVB AR0,#VarB ; AR0 points to VarB. VarB address = 00�0066

00�0043 F348 I4: ADD AL,*XAR0++ ; Add content of VarB to VarB = 0001

; AL, and add 1 to XAR0. (VarB + 1) = 0003

00�0044 F349 I5: MOV @VarC,AL ; Replace content of VarC (VarB + 2) = 0005

; with content of AL. VarC address = 00�0204

00�0045 F34A I6: ADD AL,*XAR0++ ; Add content of (VarB + 1) VarD address = 00�0205

; to AL, and add 1 to XAR0.

00�0046 F34B I7: MOV @VarD,AL ; Replace content of VarD

; with content of AL.

00�0047 F34C I8: ADD AL,*XAR0 ; Add content of (VarB + 2)

; to AL.

F1 F2 D1 Instruction D2 R1 R2 E W

00�0040

F346:F345

00�0042 F345

F348:F347 F346 I1: MOV DP,#VarA DP = 8

00�0044 F347 I2: MOV AL,@VarA Generate
VarA address

−

F34A:F349 F348 I3: MOVB XAR0,#Var
B

XAR0 = 66 00�0203 −

00�0046 F349 I4: ADD AL,*XAR0+
+

XAR0 = 67 − 1230 −

F34C:F34B F34A I5: MOV @VarC,AL Generate
VarC address

00�0066 − AL=1230 −

F34B I6: ADD AL,*XAR0+
+

XAR0 = 68 − 0001 − −

F34C I7: MOV @VarD,AL Generate
VarD address

00�0067 − AL=1231 −

I8: ADD AL,*XAR0 XAR0 = 68 − 0003 − −

 00�0068 − AL=1234 00�0204

1231

 0005 − −

 AL=1239 00�0205

1234

Visualizing Pipeline Activity

4-9Pipeline

WER2R1D2InstructionD1F2F1

−

Note: The opcodes shown in the F2 and D1 columns were chosen for illustrative purposes; they are not the actual opcodes of
the instructions shown.

The pipeline activity in Example 4−2 can also be represented by the simplified
diagram in Example 4−3. This type of diagram is useful if your focus is on the
path of each instruction rather than on specific pipeline events. In cycle 8, the
pipeline is full: there is an instruction in every pipeline phase. Also, the effective
execution time for each of these instructions is one cycle. Some instructions
finish their activity at the D2 phase, some at the E phase, and some at the W
phase. However, if you choose one phase as a reference, you can see that
each instruction is in that phase for one cycle.

Example 4−3. Simplified Diagram of Pipeline Activity

F1 F2 D1 D2 R1 R2 E W Cycle

I1 1

I2 I1 2

I3 I2 I1 3

I4 I3 I2 I1 4

I5 I4 I3 I2 I1 5

I6 I5 I4 I3 I2 I1 6

I7 I6 I5 I4 I3 I2 I1 7

I8 I7 I6 I5 I4 I3 I2 I1 8

I8 I7 I6 I5 I4 I3 I2 9

I8 I7 I6 I5 I4 I3 10

I8 I7 I6 I5 I4 11

I8 I7 I6 I5 12

I8 I7 I6 13

I8 I7 14

I8 15

Freezes in Pipeline Activity

 4-10

4.3 Freezes in Pipeline Activity

This section describes the two causes for freezes in pipeline activity:

� Wait states
� An instruction-not-available condition

4.3.1 Wait States

When the CPU requests a read from or write to a memory device or peripheral
device, that device may take more time to finish the data transfer than the CPU
allots by default. Each device must use one of the CPU ready signals to insert
wait states into the data transfer when it needs more time. The CPU has three
independent sets of ready signals: one set for reads from and writes to pro-
gram space, a second set for reads from data space, and a third set for writes
to data space. Wait-state requests freeze a portion of the pipeline if they are
received during the F1, R1, or W phase of an instruction:

� Wait states in the F1 phase. The instruction-fetch mechanism halts until
the wait states are completed. This halt effectively freezes activity for
instructions in their F1, F2, and D1 phases. However, because the F1−D1
hardware and the D2−W hardware are decoupled, instructions that are in
their D2−W phases continue to execute.

� Wait states in the R1 phase. All D2−W activities of the pipeline freeze.
This is necessary because subsequent instructions can depend on the
data-read taking place. Instruction fetching continues until the instruction-
fetch queue is full or a wait-state request is received during an F1 phase.

� Wait states in the W phase. All D2−W activity in the pipeline freezes. This
is necessary because subsequent instructions may depend on the write
operation happening first. Instruction fetching continues until the instruc-
tion-fetch queue is full or a wait-state request is received during an F1
phase.

4.3.2 Instruction-Not-Available Condition

The D2 hardware requests an instruction from the instruction-fetch queue. If
a new instruction has been fetched and has completed its D1 phase, the
instruction is loaded into the instruction register for more decoding. However,
if a new instruction is not waiting in the queue, an instruction-not-available
condition exists. Activity in the F1−D1 hardware continues. However, the activ-
ity in the D2−W hardware ceases until a new instruction is available.

Freezes in Pipeline Activity

4-11Pipeline

One time that an instruction-not-available condition will occur is when the first
instruction after a discontinuity is at an odd address and has 32 bits. A
discontinuity is a break in sequential program flow, generally caused by a
branch, a call, a return, or an interrupt. When a discontinuity occurs, the
instruction-fetch queue is emptied, and the CPU branches to a specified
address. If the specified address is an odd address, a 16-bit fetch is performed
at the odd address, followed by 32-bit fetches at subsequent even addresses.
Thus, if the first instruction after a discontinuity is at an odd address and has
32 bits, two fetches are required to get the entire instruction. The D2−W hard-
ware ceases until the instruction is ready to enter the D2 phase.

To avoid the delay where possible, you can begin each block of code with one
or two (preferably two) 16-bit instructions:

FunctionA:
16-bit instruction ; First instruction
16-bit instruction ; Second instruction
32-bit instruction ; 32-bit instructions can start here
.
.
.

If you choose to use a 32-bit instruction as the first instruction of a function or
subroutine, you can prevent a pipeline delay only by making sure the instruc-
tion begins at an even address.

Pipeline Protection

 4-12

4.4 Pipeline Protection

Instructions are being executed in parallel in the pipeline, and different instruc-
tions perform modifications to memory and registers during different phases
of completion. In an unprotected pipeline, this could lead to pipeline conflicts�
reads and writes at the same location happening out of the intended order.
However, the C28x pipeline has a mechanism that automatically protects
against pipeline conflicts. There are two types of pipeline conflicts that can
occur on the C28x:

� Conflicts during reads and writes to the same data-space location
� Register conflicts

The pipeline prevents these conflicts by adding inactive cycles between
instructions that would cause the conflicts. Sections 4.4.1 and 4.4.2 explain
the circumstances under which these pipeline-protection cycles are added
and tells how to avoid them, so that you can reduce the number of inactive
cycles in your programs.

4.4.1 Protection During Reads and Writes to the Same Data-Space Location

Consider two instructions, A and B. Instruction A writes a value to a memory
location during its W phase. Instruction B must read that value from the same
location during its R1 and R2 phases. Because the instructions are being
executed in parallel, it is possible that the R1 phase of instruction B could occur
before the W phase of instruction A. Without pipeline protection, instruction B
could read too early and fetch the wrong value. The C28x pipeline prevents
that read by holding instruction B in its D2 phase until instruction A is finished
writing.

Example 4−4 shows a conflict between two instructions that are accessing the
same data-memory location. The pipeline activity shown is for an unprotected
pipeline. For convenience, the F1−D1 phases are not shown. I1 writes to VarA
during cycle 5. Data memory completes the store in cycle 6. I2 should not read
the data-memory location any sooner than cycle 7. However, I2 performs the
read during cycle 4 (three cycles too early). To prevent this kind of conflict, the
pipeline-protection mechanism would hold I2 in the D2 phase for 3 cycles.
During these pipeline-protection cycles, no new operations occur.

Pipeline Protection

4-13Pipeline

Example 4−4. Conflict Between a Read From and a Write to Same Memory Location
I1: MOV @VarA,AL ; Write AL to data−memory location
I2: MOV AH,@VarA ; Read same location, store value in AH

DZ Kl RZ E W Cycle

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 6

I2 7

I2 8

You can reduce or eliminate these types of pipeline-protection cycles if you can
take other instructions in your program and insert them between the instruc-
tions that conflict. Of course, the inserted instructions must not cause conflicts
of their own or cause improper execution of the instructions that follow them.
For example, the code in Example 4−4 could be improved by moving a CLRC
instruction to the position between the MOV instructions (assume that the
instructions following CLRC SXM operate correctly with SXM = 0):
I1: MOV @VarA,AL ; Write AL to data−memory location

CLRC SXM ; SXM = 0 (sign extension off)
I2: MOV AH,@VarA ; Read same location, store value in AH

Inserting the CLRC instruction between I1 and I2 reduces the number of pipe-
line-protection cycles to two. Inserting two more instructions would remove the
need for pipeline protection. As a general rule, if a read operation occurs within
three instructions from a write operation to the same memory location, the
pipeline protection mechanism adds at least one inactive cycle.

4.4.2 Protection Against Register Conflicts

All reads from and writes to CPU registers occur in either the D2 phase or the
E phase of an instruction. A register conflict arises when an instruction
attempts to read and/or modify the content of a register (in the D2 phase)
before a previous instruction has written to that register (in the E phase).

The pipeline-protection mechanism resolves register conflicts by holding the
later instruction in its D2 phase for as many cycles as needed (one to three).
You do not have to consider register conflicts unless you wish to achieve
maximum pipeline efficiency. If you choose to reduce the number of pipe-
line-protection cycles, you can identify the pipeline phases in which registers
are accessed and try to move conflicting instructions away from each other.

Pipeline Protection

 4-14

Generally, a register conflict involves one of the address registers:

� 16-bit auxiliary registers AR0−AR7
� 32-bit auxiliary registers XAR0−XAR7
� 16-bit data page pointer (DP)
� 16-bit stack pointer (SP)

Example 4−5 shows a register conflict involving auxiliary register XAR0. The
pipeline activity shown is for an unprotected pipeline, and for convenience, the
F1−D1 phases are not shown. I1 writes to XAR0 at the end of cycle 4. I2 should
not attempt to read XAR0 until cycle 5. However, I2 reads XAR0 (to generate
an address) during cycle 2. To prevent this conflict, the pipeline-protection
mechanism would hold I2 in the D2 phase for three cycles. During these
cycles, no new operations occur.

Example 4−5. Register Conflict
I1: MOVB AR0,@7 ; Load AR0 with the value addressed by

; the operand @7 and clear the upper
; half of XAR0.

I2: MOV AH,*XAR0 ; Load AH with the value pointed to by
; XAR0.

D2 R1 R2 E W Cycle

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 6

I2 7

You can reduce or eliminate pipeline-protection cycles due to a register conflict
by inserting other instructions between the instructions that cause the conflict.
For example, the code in Example 4−5 could be improved by moving two other
instructions from elsewhere in the program (assume that the instructions
following SETC SXM operate correctly with PM = 1 and SXM = 1):
I1: MOVB AR0,@7 ; Load AR0 with the value addressed by

; the operand @7 and clear the upper
; half of XAR0.

SPM 0 ; PM = 1 (no product shift)
SETC SXM ; SXM = 1 (sign extension on)

I2: MOV AH,*XAR0 ; Load AH with the value pointed to by
; AR0.

Inserting the SPM and SETC instructions reduces the number of pipeline-
protection cycles to one. Inserting one more instruction would remove the

Pipeline Protection

4-15Pipeline

need for pipeline protection. As a general rule, if a read operation occurs within
three instructions from a write operation to the same register, the pipeline-
protection mechanism adds at least one inactive cycle.

Avoiding Unprotected Operations

 4-16

4.5 Avoiding Unprotected Operations

This section describes pipeline conflicts that the pipeline-protection mecha-
nism does not protect against. These conflicts are avoidable, and this section
offers suggestions for avoiding them.

4.5.1 Unprotected Program-Space Reads and Writes

The pipeline protects only register and data-space reads and writes. It does
not protect the program-space reads done by the PREAD and MAC instruc-
tions or the program-space write done by the PWRITE instruction. Be careful
with these instructions when using them to access a memory block that is
shared by data space and program space.

As an example, suppose a memory location can be accessed at address
00�0D5016 in program space and address 0000�0D5016 in data space. Consid-
er the following lines of code:

; XAR7 = 000D50 in program space
; Data1 = 000D50 in data space
ADD @Data1,AH ; Store AH to data−memory location

; Data1.
PREAD @AR1,*XAR7 ; Load AR1 from program−memory

; location given by XAR7.

The operands @Data1 and *XAR7 are referencing the same location, but the
pipeline cannot interpret this fact. The PREAD instruction reads from the
memory location (in the R2 phase) before the ADD writes to the memory loca-
tion (in the W phase).

However, the PREAD is not necessary in this program. Because the location
can be accessed by an instruction that reads from data space, you can use
another instruction, such as a MOV instruction:

ADD @Data1,AH ; Store AH to memory location Data1.
MOV AR1,*XAR7 ; Load AR1 from memory location

; given by XAR7.

4.5.2 An Access to One Location That Affects Another Location

If an access to one location affects another location, you may need to correct
your program to prevent a pipeline conflict. You only need to be concerned
about this kind of pipeline conflict if you are addressing a location outside of
a protected address range. (See section 4.5.3.). Consider the following exam-
ple:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

Avoiding Unprotected Operations

4-17Pipeline

This program causes a misread. The TBIT instruction reads bit 15 (in the R2
phase) before the MOV instruction writes to bit 15 (in the W phase). If the TBIT
instruction reads a 1, the code prematurely ends the loop. Because DataA and
DataB reference different data-memory locations, the pipeline does not identi-
fy this conflict.

However, you can correct this type of error by inserting two or more NOP (no
operation) instructions to allow for the delay between the write to DataA and
the change to bit 15 of DataB. For example, if a 2-cycle delay is sufficient, you
can fix the previous code as follows:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

NOP ; Delay by 1 cycle.
NOP ; Delay by 1 cycle.

$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

4.5.3 Write Followed By Read Protection Mode

The CPU contains a write followed by read protection mode to ensure that any
read operation that follows a write operation within a protected address range
is executed as written by delaying the read operation until the write is initiated.

See your device data sheet for device-specific information about which
memory region is write-followed-by-read protected.

The PROTSTART(15:0) and PROTRANGE(15:0) input signals set the protec-
tion range. The PROTRANGE(15:0) value is a binary multiple with the small-
est block size being 64 words, and the largest being 4M words (64 words, 128
words, 256 words ...1M words, 2M words, 4M words). The PROTSTART ad-
dress must always be a multiple of the chosen range. For example, if a 4K
block size is selected, then the start address must be a multiple of 4K.

The ENPROT signal enables this feature (when set high), it disables this fea-
ture (when set low)

All of the above signals are latched on every cycle. The above signals are con-
nected to registers and can be changed within the application program.

The above mechanism only works for reads that follow writes to the protected
area. Reads and write sequences to unprotected areas are not affected, as
shown in the following examples.

Avoiding Unprotected Operations

 4-18

Example 1: write protected_area
 write protected_area
 write protected_area
 <− pipe protection
 (3 cycles)
 read protected_area

Example 2: write protected_area
 write protected_area
 write protected_area
 <− no pipe protection
 invoked
 read non_protected_area
 <− pipe protection
 (2 cycles)
 read protected_area
 read protected_area

Example 3: write non_protected_area
 write non_protected_area
 write non_protected_area
 <− no pipe protection
 invoked
 read protected_area

5-1

C28x Addressing Modes

This chapter describes the addressing modes of the C28x and provides exam-
ples.

Topic Page

5.1 Types of Addressing Modes 5-2.

5.2 Addressing Modes Select Bit (AMODE) 5-4.

5.3 Assembler/Compiler Tracking of AMODE Bit 5-7.

5.4 Direct Addressing Modes (DP) 5-8.

5.5 Stack Addressing Modes (SP) 5-9.

5.6 Indirect Addressing Modes 5-10.

5.7 Register Addressing Modes 5-25.

5.8 Data/Program/IO space Immediate Addressing Modes 5-28.

5.9 Program Space Indirect Addressing Modes 5-30.

5.10 Byte Addressing Modes 5-31.

5.11 Alignment of 32-Bit Operations 5-33.

Chapter 5

Types of Addressing Modes

 5-2

5.1 Types of Addressing Modes

The C28x CPU supports four basic types of addressing modes:

� Direct Addressing Mode

DP (data page pointer): In this mode, the 16-bit DP register behaves like a
fixed page pointer. The instruction supplies a 6-bit or 7-bit offset field,
which is concatenated with the value in the DP register. This type of ad-
dressing is useful for accessing fixed address data structures, such as pe-
ripheral registers and global or static variables in C/C++.

� Stack Addressing Mode

SP (stack pointer): In this mode, the 16-bit SP pointer is used to access
information on the software stack. The software stack grows from low to
high memory on the C28x and the stack pointer always points to the next
empty location. The instruction supplies a 6-bit offset field that is sub-
tracted from the current stack pointer value for accessing data on the stack
or the stack pointer can be post-incremented or pre-decremented when
pushing and popping data from the stack, respectively.

� Indirect Addressing Mode

XAR0 to XAR7 (auxiliary register pointers): In this mode, the 32-bit XARn
registers behave as generic data pointers. The instruction can direct to
post-increment, pre/post-decrement, or index from the current register
contents with either a 3-bit immediate offset field or with the contents of
another 16-bit register.

� Register Addressing Mode

In this mode, another register can be the source or destination operand of
an access. This enables register-to-register operations in the C28x archi-
tecture.

On most C28x instructions, an 8-bit field in the instruction op-code selects the
addressing mode to use and what modification to make to that mode. In the
C28x instruction set, this field is referred to as:

� loc16

Selects Direct/Stack/Indirect/Register addressing mode for 16-bit data
access.

� loc32

Selects Direct/Stack/Indirect/Register addressing mode for 32-bit data
access.

Types of Addressing Modes

5-3C28x Addressing Modes

An example C28x instruction description, which uses the above, would be:

� ADD AL,loc16

Take the 16-bit contents of AL register, add the contents of 16-bit location
specified by the �loc16� field and store the contents in AL register.

� ADDL loc32,ACC

Take the 32-bit contents of the location pointed to by the �loc32� field, add
the contents of the 32-bit ACC register, and store the result back into the
location specified by the �loc32� field.

Other types of addressing modes supported are:

� Data/Program/IO Space Immediate Addressing Modes:

In this mode, the address of the memory operand is embedded in the in-
struction.

� Program Space Indirect Addressing Modes:

Some instructions can access a memory operand located in program
space using an indirect pointer. Since memory is unified on the C28x CPU,
this enables the reading of two operands in a single cycle.

Only a small number of instructions use the above modes and typically they
are in combination with the �loc16/loc32� modes.

The following sections contain detailed descriptions of the addressing modes
with example instructions. For more information about the instructions shown
in examples throughout this chapter, see Chapter 6, Assembly Language In-
structions.

Addressing Modes Select Bit (AMODE)

 5-4

5.2 Addressing Modes Select Bit (AMODE)

To accommodate various types of addressing modes, an addressing mode bit
(AMODE) selects the decoding of the 8-bit field (loc16/loc32). This bit is found
in Status Register 1 (ST1). The addressing modes have been broadly classi-
fied as follows:

� AMODE = 0

This is the default mode on reset and is the mode used by the C28x C/C++
compiler. This mode is not fully compatible to the C2xLP CPU addressing
modes. The data page pointer offset is 6-bits (it is 7-bits on the C2xLP) and
not all of the indirect addressing modes are supported.

� AMODE = 1

This mode contains addressing modes that are fully compatible to the
C2xLP device. The data page pointer offset is increased to 7-bits and all of
the indirect addressing modes available on the C2xLP are supported.

The available addressing modes, for the �loc16� or �loc32� field, are summa-
rized in Table 5−1.

Table 5−1. Addressing Modes for �loc16� or �loc32�

AMODE = 0 AMODE = 1

8-Bit Decode �loc16/loc32� Syntax 8-Bit Decode �loc16/loc32� Syntax

Direct Addressing Modes (DP):

0 0 III III @6bit 0 I III III @@7bit

Stack Addressing Modes (SP):

0 1 III III

1 0 111 101

1 0 111 110

*−SP[6bit]

*SP++

*−−SP

1 0 111 101

1 0 111 110

*SP++

*−−SP

C28x Indirect Addressing Modes (XAR0 to XAR7):

1 0 000 AAA

1 0 001 AAA

1 0 010 AAA

1 0 011 AAA

1 1 III AAA

*XARn++

*−−XARn

*+XARn[AR0]

*+XARn[AR1]

*+XARn[3bit]

1 0 000 AAA

1 0 001 AAA

1 0 010 AAA

1 0 011 AAA

*XARn++

*−−XARn

*+XARn[AR0]

*+XARn[AR1]

Addressing Modes Select Bit (AMODE)

5-5C28x Addressing Modes

Table 5−1. Addressing Modes for �loc16� or �loc32�

 AMODE = 1AMODE = 0

�loc16/loc32� Syntax8-Bit Decode�loc16/loc32� Syntax8-Bit Decode

C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7):

1 0 111 000

1 0 111 001

1 0 111 010

1 0 111 011

1 0 111 100

1 0 101 110

1 0 101 111

1 0 110 RRR

*

*++

*−−

*0++

*0−−

*BR0++

*BR0−−

*,ARPn

1 0 111 000

1 0 111 001

1 0 111 010

1 0 111 011

1 0 111 100

1 0 101 110

1 0 101 111

1 0 110 RRR

1 1 000 RRR

1 1 001 RRR

1 1 010 RRR

1 1 011 RRR

1 1 100 RRR

1 1 101 RRR

*

*++

*−−

*0++

*0−−

*BR0++

*BR0−−

*,ARPn

*++,ARPn

*−−,ARPn

*0++,ARPn

*0−−,ARPn

*BR0++,ARPn

*BR0−−,ARPn

Circular Indirect Addressing Modes (XAR6, XAR1):

1 0 111 111 *AR6%++ 1 0 111 111 *+XAR6[AR1%++]

32-Bit Register Addressing Modes (XAR0 to XAR7, ACC, P, XT):

1 0 100 AAA

1 0 101 001

1 0 101 011

1 0 101 100

@XARn

@ACC

@P

@XT

1 0 100 AAA

1 0 101 001

1 0 101 011

1 0 101 100

@XARn

@ACC

@P

@XT

Addressing Modes Select Bit (AMODE)

 5-6

Table 5−1. Addressing Modes for �loc16� or �loc32�

 AMODE = 1AMODE = 0

�loc16/loc32� Syntax8-Bit Decode�loc16/loc32� Syntax8-Bit Decode

16-Bit Register Addressing Modes (AR0 to AR7, AH, AL, PH, PL, TH, SP):

1 0 100 AAA

1 0 101 000

1 0 101 001

1 0 101 010

1 0 101 011

1 0 101 100

1 0 101 101

@ARn

@AH

@AL

@PH

@PL

@TH

@SP

1 0 100 AAA

1 0 101 000

1 0 101 001

1 0 101 010

1 0 101 011

1 0 101 100

1 0 101 101

@ARn

@AH

@AL

@PH

@PL

@TH
@SP

In the �C28x Indirect� addressing modes, the auxiliary register pointer used in
the addressing mode is implicitly specified. In the �C2xLP Indirect� addressing
modes, a 3-bit pointer called the auxiliary register pointer (ARP) is used to se-
lect which of the auxiliary registers is currently used and which pointer is used
in the next operation.

The examples below illustrate the differences between the �C28x Indirect� and
�C2xLP Indirect� addressing modes:

� ADD AL,*XAR4++

Read the contents of 16-bit memory location pointed to by register XAR4,
add the contents to AL register. Post-increment the contents of XAR4 by 1.

� ADD AL,*++

Assume ARP pointer in ST1 contains the value 4. Read the contents of
16-bit memory location pointed to by register XAR4, add the contents to
AL register. Post-increment the contents of XAR4 by 1.

� ADD AL,*++,ARP5

Assume ARP pointer in ST1 contains the value 4. Read the contents of
16-bit memory location pointed to by register XAR4, add the contents to
AL register. Post-increment the contents of XAR4 by 1. Set the ARP point-
er to 5. Now it points to XAR5.

On the C28x instruction syntax, the destination operand is always on the left
and the source operands are always on the right.

Assembler/Compiler Tracking of AMODE Bit

5-7C28x Addressing Modes

5.3 Assembler/Compiler Tracking of AMODE Bit

The compiler will always assume the addressing mode is set to AMODE = 0
and therefore will only use addressing modes that are valid for AMODE = 0.
The assembler can be instructed, via the command line options, to default to
either AMODE = 0 or AMODE = 1. The command line options are:

−v28 Assumes AMODE = 0 (C28x addressing modes).

−v28 −m20 Assumes AMODE = 1 (full C2xLP compatible addressing
modes.

Additionally, the assembler allows directives to be embedded within a file to
instruct the assembler to override the default mode and change syntax check-
ing to the new address mode setting:

.c28_amode Tells assembler that any code that follows assumes AMODE =
0 (C28x addressing modes).

.lp_amode Tells assembler that any code that follows assumes AMODE =
1 (full C2xLP compatible addressing modes)

The above directives cannot be nested. The above directives can be used as
follows within an assembly program:

; File assembled using “−v28” option (assume AMODE = 0):

 . ; This section of code can only use AMODE = 0
 ; addressing modes
 .
 .
 .
 .

SETC AMODE ; Change to AMODE = 1

.lp_amode ; Tell assembler to check for AMODE = 1 syntax

 . ; This section of code can only use AMODE = 1
 ; addressing modes
 .
 .
 .
 .

CLRC AMODE ; Revert back to AMODE = 0

.c28_amode ; Tell assembler to check for AMODE = 1 syntax

 . ; This section of code can only use AMODE = 0
 ; addressing modes
 .
 .
 .
 .

; End of file.

Direct Addressing Modes (DP)

 5-8

5.4 Direct Addressing Modes (DP)

AMODE �loc16/loc32� Syntax Description

0 @6bit 32bitDataAddr(31:22) = 0

32bitDataAddr(21:6) = DP(15:0)

32bitDataAddr(5:0) = 6bit

Note: The 6-bit offset value is concatenated with the 16-bit DP register. The
offset value enables 0 to 63 words to be addressed relative to the cur-
rent DP register value.

Example(s):
MOVW DP,#VarA ; Load DP pointer with page value containing VarA
ADD AL,@VarA ; Add memory location VarA to register AL
MOV @VarB,AL ; Store AL into memory location VarB

 ; VarB is located in the same 64−word page as VarA
MOVW DP,#VarC ; Load DP pointer with page value containing VarC
SUB AL,@VarC ; Subtract memory location VarC from register AL
MOV @VarD,AL ; Store AL into memory location VarD
 ; VarC is located in the same 64−word page as VarD
 ; VarC & D are in different pages than VarA & B

AMODE �loc16/loc32� Syntax Description

1 @@7bit 32bitDataAddr(31:22) = 0

32bitDataAddr(21:7) = DP(15:1)

32bitDataAddr(6:0) = 7bit

Note: The 7-bit offset value is concatenated with the upper 15-bits of the DP
register. Bit 0 of DP register is ignored and is not affected by the op-
eration. The offset value enables 0 to 127 words to be addressed rela-
tive to the current DP register value.

Example(s):
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1

MOVW DP,#VarA ; Load DP pointer with page value containing VarA
ADD AL,@@VarA ; Add memory location VarA to register AL
MOV @@VarB,AL ; Store AL into memory location VarB

 ; VarB is located in the same 128−word page as VarA
MOVW DP,#VarC ; Load DP pointer with page value containing VarC
SUB AL,@@VarC ; Subtract memory location VarC from register AL
MOV @@VarD,AL ; Store AL into memory location VarD
 ; VarC is located in the same 128−word page as VarD

; VarC & D are in different pages than VarA & B

Note: The direct addressing mode can access only the lower 4M of data address space on the C28x device.

Stack Addressing Modes (SP)

5-9C28x Addressing Modes

5.5 Stack Addressing Modes (SP)

AMODE �loc16/loc32� Syntax Description

0 *−SP[6bit] 32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP − 6bit

Note: The 6-bit offset value is subtracted from the current 16-bit SP register val-
ue. The offset value enables 0 to 63 words to be addressed relative to the
current SP register value.

Example(s):
ADD AL,*−SP[5] ; Add 16-bit contents from stack location

 ; −5 words from top of stack to AL register
MOV *-SP[8],AL ; Store 16-bit AL register to stack location

 ; -8 words from top of stack
ADDL ACC,*−SP[12] ; Add 32-bit contents from stack location

 ; −12 words from top of stack to ACC register.
MOVL *-SP[34],ACC ; Store 32-bit ACC register to stack location

 ; −34 words from top of stack

AMODE �loc16/loc32� Syntax Description

X *SP++ 32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP

if(loc16), SP = SP + 1

if(loc32), SP = SP + 2

Example(s):
MOV *SP++,AL ; Push contents of 16-bit AL register onto top

; of stack
MOVL *SP++,P ; Push contents of 32-bit P register onto top

; of stack

AMODE �loc16/loc32� Syntax Description

X *−−SP if(loc16), SP = SP − 1

if(loc32), SP = SP − 2

32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP

Example(s):
ADD AL,*−−SP ; Pop contents from top of stack and add to 16-bit

; AL register
MOVL ACC,*−−SP ; Pop contents from top of stack and store in

; 32-bit ACC register

Note: This addressing mode can only access the lower 64K of data address space on the C28x device.

Indirect Addressing Modes

 5-10

5.6 Indirect Addressing Modes

This section includes indirect addressing modes for the 28x and 2xLP devices.
It also includes circular indirect addressing modes.

5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7)

AMODE �loc16/loc32� Syntax Description

X *XARn++ ARP = n

32bitDataAddr(31:0) = XARn

if(loc16), XARn = XARn + 1

if(loc32), XARn = XARn + 2

Example(s):
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
Loop:
 MOVL ACC,*XAR2++ ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2
 MOVL *XAR3++,ACC ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3
 BANZ Loop,AR0−− ; Loop until AR0 == 0, post−decrement AR0

AMODE �loc16/loc32� Syntax Description

X *−−XARn ARP = n

if(loc16), XARn = XARn − 1

if(loc32), XARn = XARn − 2

32bitDataAddr(31:0) = XARn

Example(s):
 MOVL XAR2,#Array1+N*2 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+N*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
Loop:
 MOVL ACC,*−−XAR2 ; Pre−decrement XAR2,
 ; load ACC with location pointed to by XAR2
 MOVL *−−XAR3,ACC ; Pre−decrement XAR3,
 ; store ACC into location pointed to by XAR3,
 BANZ Loop,AR0−− ; Loop until AR0 == 0, post−decrement AR0

Indirect Addressing Modes

5-11C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

X *+XARn[AR0] ARP = n

32bitDataAddr(31:0) = XARn + AR0

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper
16-bits of XAR0 are ignored. AR0 is treated as an unsigned 16-bit value.
Overflow into the upper 16-bits of XARn can occur.

Example(s):
 MOVW DP,#Array1Ptr ; Point to Array1 Pointer location
 MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1
 MOVB XAR0,#16 ; AR0 = 16, AR0H = 0
 MOVB XAR1,#68 ; AR1 = 68, AR1H = 0
 MOVL ACC,*+XAR2[AR0] ;; Swap contents of location Array1[16]
 MOVL P,*+XAR2[AR1] ;; with the contents of location Array1[68]
 MOVL *+XAR2[AR1],ACC ;;
 MOVL *+XAR2[AR0],P ;;

AMODE �loc16/loc32� Syntax Description

X *+XARn[AR1] ARP = n

32bitDataAddr(31:0) = XARn + AR1

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper
16-bits of XAR0 are ignored. AR0 is treated as an unsigned 16-bit value.
Overflow into the upper 16-bits of XARn can occur.

Example(s):
 MOVW DP,#Array1Ptr ; Point to Array1 Pointer location
 MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1
 MOVB XAR0,#16 ; AR0 = 16, AR0H = 0
 MOVB XAR1,#68 ; AR1 = 68, AR1H = 0
 MOVL ACC,*+XAR2[AR0] ;; Swap contents of location Array1[16]
 MOVL P,*+XAR2[AR1] ;; with the contents of location Array1[68]
 MOVL *+XAR2[AR1],ACC ;;
 MOVL *+XAR2[AR0],P ;;

AMODE �loc16/loc32� Syntax Description

X *+XARn[3bit] ARP = n

32bitDataAddr(31:0) = XARn + 3bit

Note: The immediate value is treated as an unsigned 3-bit value.

Example(s):
 MOVW DP,#Array1Ptr ; Point to Array1 Pointer location
 MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1
 MOVL ACC,*+XAR2[2] ;; Swap contents of location Array1[2]
 MOVL P,*+XAR2[5] ;; with the contents of location Array1[5]
 MOVL *+XAR2[5],ACC ;;
 MOVL *+XAR2[2],P ;;

Note: The assembler also accepts �*XARn� as an addressing mode. This is the same encoding as the �*+XARn[0]� mode.

Indirect Addressing Modes

 5-12

5.6.2 C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7)

AMODE �loc16/loc32� Syntax Description

X * 32bitDataAddr(31:0) = XAR(ARP)

Note: The XARn register used is the register pointed to by the current value in
the ARP pointer. ARP = 0, points to XAR0, ARP = 1, points to XAR1 and
so on.

Example(s):
 MOVZ DP,#RegAPtr ; Load DP with page address containing RegAPtr
 MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0
 MOVZ AR3,@RegBPtr ; Load AR3 with contents of RegBPtr, AR3H = 0
 ; RegAPtr and RegBPtr are located in the same
 ; 128 word data page. Both are located in
 ; the low 64K of data memory space.
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOV *,#0x0404 ; Store 0x0404 into location pointed by XAR2
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOV *,#0x8000 ; Store 0x8000 into location pointed by XAR3

AMODE �loc16/loc32� Syntax Description

X *,ARPn 32bitDataAddr(31:0) = XAR(ARP)

ARP = n

Example(s):
 MOVZ DP,#RegAPtr ; Load DP with page address containing RegAPtr
 MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0
 MOVZ AR3,@RegBPtr ; Load AR3 with contents of RegBPtr, AR3H = 0
 ; RegAPtr and RegBPtr are located in the same
 ; 128 word data page. Both are located in
 ; the low 64K of data memory space.
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOV *,#0x0404,ARP3 ; Store 0x0404 into location pointed by XAR2,
 ; Set ARP pointer to point to XAR3
 MOV *,#0x8000 ; Store 0x8000 into location pointed by XAR3

Indirect Addressing Modes

5-13C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

X *++ 32bitDataAddr(31:0) = XAR(ARP)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example(s):
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*++ ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *++,ACC ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3
 NOP *,ARP0 ; Set ARP pointer to point to XAR0
 XBANZ Loop,*−− ; Loop until AR0 == 0, post−decrement AR0

AMODE �loc16/loc32� Syntax Description

X *++,ARPn 32bitDataAddr(31:0) = XAR(ARP)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example(s):
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*++,ARP3 ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2, set ARP to point to XAR3
 MOVL *++,ACC,ARP0 ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3, set ARP to point to XAR0
 XBANZ Loop,*−−,ARP2 ; Loop until AR0 == 0, post−decrement AR0,
 ; set ARP pointer to point to XAR2

Indirect Addressing Modes

 5-14

AMODE �loc16/loc32� Syntax Description

X *−− 32bitDataAddr(31:0) = XAR(ARP)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example(s):
 MOVL XAR2,#Array1+(N−1)*2 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*−− ; Load ACC with location pointed to by XAR2,
 ; post−decrement XAR2
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *−−,ACC ; Store ACC into location pointed to by XAR3,
 ; post−decrement XAR3
 NOP *,ARP0 ; Set ARP pointer to point to XAR0
 XBANZ Loop,*−− ; Loop until AR0 == 0, post−decrement AR0

AMODE �loc16/loc32� Syntax Description

1 *−−,ARPn 32bitDataAddr(31:0) = XAR(ARP)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

ARP = n

 MOVL XAR2,#Array1+(N−1)*2 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#N−1 ; Load AR0 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*−−,ARP3 ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2, set ARP to point
 ; to XAR3
 MOVL *−−,ACC,ARP0 ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3, set ARP to point
 ; to XAR0
 XBANZ Loop,*−−,ARP2 ; Loop until AR0 == 0, post−decrement AR0,
 ; set ARP pointer to point to XAR2

Indirect Addressing Modes

5-15C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

X *0++ 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP) = XAR(ARP) + AR0

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper
16-bits of XAR0 ignored. AR0 is treated as an unsigned 16-bit value.
Overflow into the upper 16-bits of XAR(ARP) can occur.

Example(s):
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#4 ; Set AR0 to copy every fourth value from
 ; Array1 to Array2
 MOV @AR1,#N−1 ; Load AR1 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*0++ ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2 by AR0
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *++,ACC ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3
 NOP *,ARP1 ; Set ARP pointer to point to XAR1
 XBANZ Loop,*−− ; Loop until AR1 == 0, post−decrement AR1

AMODE �loc16/loc32� Syntax Description

1 *0++,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP) = XAR(ARP) + AR0

ARP = n

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper
16-bits of XAR0 ignored. AR0 is treated as an unsigned 16-bit value.
Overflow into the upper 16-bits of XAR(ARP) can occur.

Example(s):
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#4 ; Set AR0 to copy every fourth value from
 ; Array1 to Array2
 MOV @AR1,#N−1 ; Load AR1 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*0++,ARP3 ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2 by AR0, set ARP pointer
 ; to point to XAR3
 MOVL *++,ACC,ARP1 ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3, set ARP pointer to point
 ; to XAR1
 XBANZ Loop,*−−,ARP2 ; Loop until AR1 == 0, post−decrement AR1,
 ; set ARP to point to XAR2

Indirect Addressing Modes

 5-16

AMODE �loc16/loc32� Syntax Description

X *0−− 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP) = XAR(ARP) − AR0

Note: The lower 16-bits of XAR0 are subtracted from the selected 32-bit regis-
ter. Upper 16-bits of XAR0 ignored. AR0 is treated as an unsigned 16-bit
value. Underflow into the upper 16-bits of XAR(ARP) can occur.

Example(s):
 MOVL XAR2,#Array1+(N−1)*8 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#4 ; Set AR0 to copy every fourth value from
 ; Array1 to Array2
 MOV @AR1,#N−1 ; Load AR1 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*0−− ; Load ACC with location pointed to by
 ; XAR2, post−decrement XAR2 by AR0
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *−−,ACC ; Store ACC into location pointed to by
 ; XAR3, post−decrement XAR3
 NOP *,ARP1 ; Set ARP pointer to point to XAR1
 XBANZ Loop,*−− ; Loop until AR1 == 0, post−decrement AR1

AMODE �loc16/loc32� Syntax Description

1 *0−−,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP) = XAR(ARP) − AR0

ARP = n

Note: The lower 16-bits of XAR0 are subtracted from the selected 32-bit regis-
ter. Upper 16-bits of XAR0 ignored. AR0 is treated as an unsigned 16-bit
value. Underflow into the upper 16-bits of XAR(ARP) can occur.

Example(s):
 MOVL XAR2,#Array1+(N−1)*8 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#4 ; Set AR0 to copy every fourth value from
 ; Array1 to Array2
 MOV @AR1,#N−1 ; Load AR1 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*0−−,ARP3 ; Load ACC with location pointed to by
 ; XAR2, post−decrement XAR2 by AR0, set ARP
 ; pointer to point to XAR3
 MOVL *−−,ACC,ARP1 ; Store ACC into location pointed to by
 ; XAR3, post−decrement XAR3, set ARP
 ; pointer to point to XAR1
 XBANZ Loop,*−−,ARP2 ; Loop until AR1 == 0, post−decrement AR1,
 ; set ARP to point to XAR2

Indirect Addressing Modes

5-17C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

X *BR0++ 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0) = AR(ARP) rcadd AR0

XAR(ARP)(31:16) = unchanged

Note: The lower 16-bits of XAR0 are reverse carry added (rcadd) to the lower
16-bits of the selected register. Upper 16-bits of XAR0 ignored. Upper
16-bits of the selected register unchanged by the operation.

Example(s):
; Transfer contents of Array1 to Array2 in bit reverse order:
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#N ; Load AR0 with size of array,
 ; N must be a multiple of 2 (2,4,8,16,...)
 MOV @AR1,#N−1 ; Load AR1 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*++ ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *BR0++,ACC ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3 with AR0 reverse carry add
 NOP *,ARP1 ; Set ARP pointer to point to XAR1
 XBANZ Loop,*−− ; Loop until AR1 == 0, post−decrement AR1

AMODE �loc16/loc32� Syntax Description

1 *BR0++,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0) = AR(ARP) rcadd AR0

XAR(ARP)(31:16) = unchanged

ARP = n

Note: The lower 16-bits of XAR0 are reverse carry added (rcadd) to the lower
16-bits of the selected register. Upper 16-bits of XAR0 ignored. Upper
16-bits of the selected register unchanged by the operation.

Example(s):
; Transfer contents of Array1 to Array2 in bit reverse order:
 MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1
 MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2
 MOV @AR0,#N ; Load AR0 with size of array,
 ; N must be a multiple of 2 (2,4,8,16,...)
 MOV @AR1,#N−1 ; Load AR1 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*++,ARP3 ; Load ACC with location pointed to by XAR2,
 ; post−increment XAR2, set ARP pointer to point
 ; to XAR3

Indirect Addressing Modes

 5-18

 MOVL *BR0++,ACC,ARP1 ; Store ACC into location pointed to by XAR3,
 ; post−increment XAR3 with AR0 reverse carry
 ; add, set ARP pointer to point to XAR1
 XBANZ Loop,*−−,ARP2 ; Loop until AR1 == 0, post−decrement AR1,
 ; set ARP to point to XAR2

AMODE �loc16/loc32� Syntax Description

X *BR0−− Address Generation:

32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0) = AR(ARP) rbsub AR0 {see note [1]}

XAR(ARP)(31:16) = unchanged

Note: The lower 16-bits of XAR0 are reverse borrow subtracted (rbsub) from the
lower 16-bits of the selected register. Upper 16-bits of XAR0 ignored. Up-
per 16-bits of the selected register unchanged by the operation.

Example(s):
; Transfer contents of Array1 to Array2 in bit reverse order:
 MOVL XAR2,#Array1+(N−1)*2 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#N ; Load AR0 with size of array,
 ; N must be a multiple of 2 (2,4,8,16,...)
 MOV @AR1,#N−1 ; Load AR1 with loop count N
Loop:
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 MOVL ACC,*−− ; Load ACC with location pointed to by
 ; XAR2, post−decrement XAR2
 NOP *,ARP3 ; Set ARP pointer to point to XAR3
 MOVL *BR0−−,ACC ; Store ACC into location pointed to by
 ; XAR3, post−decrement XAR3 with AR0
 ; reverse borrow subtract
 NOP *,ARP1 ; Set ARP pointer to point to XAR1
 XBANZ Loop,*−− ; Loop until AR1 == 0, post−decrement AR1

Indirect Addressing Modes

5-19C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

1 *BR0−−,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0) = AR(ARP) rbsub AR0

XAR(ARP)(31:16) = unchanged

ARP = n

Note: The lower 16-bits of XAR0 are reverse borrow subtracted (rbsub) from the
lower 16-bits of the selected register. Upper 16-bits of XAR0 ignored. Up-
per 16-bits of the selected register unchanged by the operation.

Example(s):
; Transfer contents of Array1 to Array2 in bit reverse order:
 MOVL XAR2,#Array1+(N−1)*2 ; Load XAR2 with end address of Array1
 MOVL XAR3,#Array2+(N−1)*2 ; Load XAR3 with end address of Array2
 MOV @AR0,#N ; Load AR0 with size of array,
 ; N must be a multiple of 2 (2,4,8,16,...)
 MOV @AR1,#N−1 ; Load AR1 with loop count N
 NOP *,ARP2 ; Set ARP pointer to point to XAR2
 SETC AMODE ; Make sure AMODE = 1
 .lp_amode ; Tell assembler that AMODE = 1
Loop:
 MOVL ACC,*−−,ARP3 ; Load ACC with location pointed to by
 ; XAR2, post−decrement XAR2, set ARP
 ; pointer to point to XAR3
 MOVL *BR0−−,ACC,ARP1 ; Store ACC into location pointed to by
 ; XAR3, post−decrement XAR3 with AR0
 ; reverse borrow subtract, set ARP pointer
 ; to point to XAR1
 XBANZ Loop,*−−,ARP2 ; Loop until AR1 == 0, post−decrement AR1,
 ; set ARP pointer to point to XAR2

Indirect Addressing Modes

 5-20

Reverse carry addition or reverse carry subtraction is used to implement bit−
reversed addressing as used in the re−ordering of data elements in FFT algo-
rithms. Typically, AR0 is initialized with the (FFT size) /2. The value of AR0 is
then added or subtracted, with reverse carry addition or subtraction, to gener-
ate the bit reversed address:

Reverse Carry Addition Example Is Shown Below (FFT size = 16):

XAR(ARP)(15:0) = 0000 0000 0000 0000

+ AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1000

+ AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0100

+ AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1100

+ AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0010

+ AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1010

......

Reverse Borrow Subtraction Example Is Shown Below (FFT size = 16):

XAR(ARP)(15:0) = 0000 0000 0000 0000

− AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1111

− AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0111

− AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1011

− AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0011

− AR0 = 0000 0000 0000 1000

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1101

......

On the C28x, the bit reversed addressing is restricted to block size < 64K. This
is OK since most FFT implementations are much less than this.

Indirect Addressing Modes

5-21C28x Addressing Modes

5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1)

AMODE �loc16/loc32� Syntax Description

0 *AR6%++ 32bitDataAddr(31:0) = XAR6

if(XAR6(7:0) == XAR1(7:0))

 {

 XAR6(7:0) = 0x00

 XAR6(15:8) = unchanged

 }

else

 {

 if(16-bit data), XAR6(15:0) =+ 1

 if(32-bit data), XAR6(15:0) =+ 2

 }

XAR6(31:16) = unchanged

ARP = 6

As seen in Figure 5−1, buffer size is determined by the 8 LSBs of AR1 or
AR1[7:0]. Specifically, the buffer size is AR1[7:0] +1. When AR1[7:0] is 255,
then the buffer size is at its maximum size of 256 words.

XAR6 points to the current address in the buffer. The top of the buffer must be
at an address where the 8 LSBs are all 0s.

If one of the instructions accessing the circular buffer performs a 32-bit opera-
tion, make sure XAR6 and AR1 are both even before the buffer is accessed.

Indirect Addressing Modes

 5-22

Figure 5−1. Circular Buffer with AMODE = 0

X X 0 8

15 8 7 0

Buffer size = 8 + 1 = 9

31 0

AR1

XAR6Top of buffer

Bottom of buffer

XAR6[7:0] is incremented until it matches AR1[7:0]

78

X X X X X X 0 0

Must be zero

XXAR6

31

XX

Matches AR1[7:0]

XX X

8

80

7 0

Example(s):
; Calculate FIR filter (X[N] = data array, C[N] = coefficient array):
 MOVW DP,#Xpointer ; Load DP with page address of Xpointer
 MOVL XAR6,@Xpointer ; Load XAR6 with current X pointer
 MOVL XAR7,#C ; Load XAR7 with start address of C array
 MOV @AR1,#N ; Load AR1 with size of data array N,
 SPM −4 ; Set product shift mode to “>> 4”
 ZAPA ; Zero ACC, P, OVC
 RPT #N−1 ; Repeat next instruction N times
 ||QMACL P,*AR6%++,*XAR7++ ; ACC = ACC + P >> 4,
 ; P = (*AR6%++ * *XAR7++) >> 32
 ADDL ACC,P << PM ; Final accumulate
 MOVL @Xpointer,XAR6 ; Store XAR6 into current X pointer
 MOVL @Sum,ACC ; Store result into sum

Indirect Addressing Modes

5-23C28x Addressing Modes

AMODE �loc16/loc32� Syntax Description

1 *+XAR6[AR1%++] 32bitDataAddr(31:0) = XAR6 + AR1

if(XAR1(15:0) == XAR1(31:16))

 {

 XAR1(15:0) = 0x0000

 }

else

 {

 if(16-bit data), XAR1(15:0) =+ 1

 if(32-bit data), XAR1(15:0) =+ 2

 }

XAR1(31:16) = unchanged

ARP = 6

Note: With this addressing mode, there is no circular buffer alignment require-
ments.

As seen in Figure 5−2, buffer size is determined by the upper 16 bits of XAR1
or XAR1[31:16]. Specifically, the size is XAR1[31:16] + 1.

XAR6 points to the top of the buffer.

The current address in the buffer is pointed to by XAR6 with an offset of
XAR1[15:0].

If the instructions that access the circular buffer perform 32-bit operations,
make sure XAR6 and XAR1[31:16] are even.

Indirect Addressing Modes

 5-24

Figure 5−2. Circular Buffer with AMODE = 1

0 0 0 9 0 0 0 0

31 16 15 0

Buffer size =
9 + 1 = 10

Buffer index

31 0

003F8010

XAR1

XAR6

Top of buffer

Bottom of buffer

XAR6 + XAR1[15:0] = 3F8010h

XAR1[15:0] increments until
it matches XAR1[31:16]

XAR6 + XAR1[15:0] = 3F8010h + 0009h

Matches
XAR1[31:16]

0x0000

Example(s):
; Calculate FIR filter (X[N] = data array, C[N] = coefficientv array):
 MOVW DP,#Xindex ; Load DP with page address of Xindex
 MOVL XAR6,#X ; Load XAR6 with start address of X array
 MOV @AH,#N ; Load AH with size of array X (N)
 MOV AL,@Xindex ; Load AL with current circular index
 MOVL XAR1,@ACC ; Load parameters into XAR1
 MOVL XAR7,#C ; Load XAR7 with start address of C array
 SPM −4 ; Set product shift mode to “>> 4”
 ZAPA ; Zero ACC, P, OVC
 RPT #N−1 ; Repeat next instruction N times
 ||QMACL P,*+XAR6[AR1%++],*XAR7++ ; ACC = ACC + P >> 4,
 ; P = (*AR6%++ * *XAR7++) >> 32
 ADDL ACC,P << PM ; Final accumulate
 MOV @Xindex,AR1 ; Store AR1 into current X index
 MOVL @Sum,ACC ; Store result into sum

Register Addressing Modes

5-25C28x Addressing Modes

5.7 Register Addressing Modes

This section includes register addressing modes for 32-bit and 16-bit registers.

5.7.1 32-Bit Register Addressing Modes

AMODE �loc32� Syntax Description

X @ACC Access contents of 32-bit ACC register.

When the �@ACC� register is the destination operand, this may affect
the Z,N,V,C,OVC flags.

Example(s):
 MOVL XAR6,@ACC ; Load XAR6 with contents of ACC
 MOVL @ACC,XT ; Load ACC with contents of XT register
 ADDL ACC,@ACC ; ACC = ACC + ACC

AMODE �loc32� Syntax Description

X @P Access contents of 32-bit P register.

Example(s):
 MOVL XAR6,@P ; Load XAR6 with contents of P
 MOVL @P,XT ; Load P with contents of XT register
 ADDL ACC,@P ; ACC = ACC + P

AMODE �loc32� Syntax Description

X @XT Access contents of 32-bit XT register.

Example(s):
 MOVL XAR6,@XT ; Load XAR6 with contents of XT
 MOVL P,@XT ; Load P with contents of XT register
 ADDL ACC,@XT ; ACC = ACC + XT

AMODE �loc32� Syntax Description

X @XARn Access contents of 32-bit XARn registers.

Example(s):
 MOVL XAR6,@XAR2 ; Load XAR6 with contents of XAR2
 MOVL P,@XAR2 ; Load P with contents of XAR2 register
 ADDL ACC,@XAR2 ; ACC = ACC + XAR2

Note: When writing assembly code, the �@� symbol in front of the register is optional. For example: �MOVL ACC,@P� or
�MOVL ACC,P�. The disassembler will use the @ to indicate operands that are �loc16� or �loc32�. For example,
MOVL ACC, @P is the MOVL ACC, loc32 instruction and MOVL @ACC, P is the MOVL loc32, P instruction.

Register Addressing Modes

 5-26

5.7.2 16-Bit Register Addressing Modes

AMODE �loc16� Syntax Description

X @AL Access contents of 16-bit AL register.

AH register contents are un-affected.

When the �@AL� register is the destination operand, this may affect
the Z,N,V,C,OVC flags.

Example(s):
 MOV PH,@AL ; Load PH with contents of AL
 ADD AH,@AL ; AH = AH + AL
 MOV T,@AL ; Load T with contents of AL

AMODE �loc16� Syntax Description

X @AH Access contents of 16-bit AH register.

AL register contents are un-affected.

When the �@AH� register is the destination operand, this may affect
the Z,N,V,C,OVC flags.

Example(s):
 MOV PH,@AH ; Load PH with contents of AH
 ADD AL,@AH ; AL = AL + AH
 MOV T,@AH ; Load T with contents of AH

AMODE �loc16� Syntax Description

X @PL Access contents of 16-bit PL register.

PH register contents are un-affected.

Example(s):
 MOV PH,@PL ; Load PH with contents of PL
 ADD AL,@PL ; AL = AL + PL
 MOV T,@PL ; Load T with contents of PL

Register Addressing Modes

5-27C28x Addressing Modes

AMODE �loc16� Syntax Description

X @PH Access contents of 16-bit PH register.

PL register contents are un-affected.

Example(s):
 MOV PL,@PH ; Load PL with contents of PH
 ADD AL,@PH ; AL = AL + PH
 MOV T,@PH ; Load T with contents of PH

AMODE �loc16� Syntax Description

X @TH Access contents of 16-bit TH register.

TL register contents are unaffected.

Example(s):
 MOV PL,@T ; Load PL with contents of T
 ADD AL,@T ; AL = AL + T
 MOVZ AR4,@T ; Load AR4 with contents of T, AR4H = 0

AMODE �loc16� Syntax Description

X @SP Access contents of 16-bit SP register.

Example(s):
 MOVZ AR4,@SP ; Load AR4 with contents of SP, AR4H = 0
 MOV AL,@SP ; Load AL with contents of SP
 MOV @SP,AH ; Load SP with contents of AH

AMODE �loc16� Syntax Description

X @ARn Access contents of 16-bit AR0 to AR7 registers.

AR0H to AR7H register contents are unaffected.

Example(s):
 MOVZ AR4,@AR2 ; Load AR4 with contents of AR2, AR4H = 0
 MOV AL,@AR3 ; Load AL with contents of AR3
 MOV @AR5,AH ; Load AR5 with contents of AH, AR5H = unchanged

Data/Program/IO Space Immediate Addressing Modes

 5-28

5.8 Data/Program/IO Space Immediate Addressing Modes

Syntax Description

*(0:16bit) 32BitDataAddr(31:16) = 0
32BitDataAddr(15:0) = 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This
addressing mode can only access the low 64K of data space.

Instructions that use this addressing mode:
MOV loc16,*(0:16bit) ; [loc16] = [0:16bit]
MOV *(0:16bit),loc16 ; [loc16] = [0:16bit]

Syntax Description

*(PA) 32BitDataAddr(31:16) = 0
32BitDataAddr(15:0) = PA 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. The I/O
strobe signal is toggled when accessing I/O space with this addressing mode. The
data space address lines are used for accessing I/O space.

Instructions that use this addressing mode:
OUT *(PA),loc16 ; IOspace[0:PA] = [loc16]
UOUT *(PA),loc16 ; IOspace[0:PA] = [loc16] (unprotected)
IN loc16,*(PA) ; [loc16] = IOspace[0:PA]

Syntax Description

0:pma 22BitProgAddr(21:16) = 0
22BitProgAddr(15:0) = pma 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This
addressing mode can only access the low 64K of program space.

Instructions that use this addressing mode:
MAC P,loc16,0:pma ; ACC = ACC + P << PM,
 ; P = [loc16] * ProgSpace[0:pma]

Data/Program/IO Space Immediate Addressing Modes

5-29C28x Addressing Modes

Syntax Description

*(pma) 22BitProgAddr(21:16) = 0x3F
22BitProgAddr(15:0) = pma 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This
addressing mode can only access the upper 64K of program space.

Instructions that use this addressing mode:
XPREAD loc16,*(pma) ; [loc16] = ProgSpace[0x3F:pma]
XMAC P,loc16,*(pma) ; ACC = ACC + P << PM,
 ; P = [loc16] * ProgSpace[0x3F:pma]
XMACD P,loc16,*(pma) ; ACC = ACC + P << PM,
 ; P = [loc16] * ProgSpace[0x3F:pma],
 ; [loc16+1] = [loc16]

Program Space Indirect Addressing Modes

 5-30

5.9 Program Space Indirect Addressing Modes

Syntax Description

*AL 22BitProgAddr(21:16) = 0x3F
22BitProgAddr(15:0) = AL

Note: If instruction is repeated, the address in AL is copied to a shadow register and the
value post−incremented on each iteration. The AL register is not modified. This ad-
dressing mode can only access the upper 64K of program space.

Instructions that use this addressing mode:
XPREAD loc16,*AL ; [loc16] = ProgSpace[0x3F:AL]
XPWRITE *AL,loc16 ; ProgSpace[0x3F:AL] = [loc16]

Syntax Description

*XAR7 22BitProgAddr(21:0) = XAR7

Note: If instruction is repeated, only in the XPREAD and XPWRITE instructions, is the ad-
dress contained in XAR7 copied to a shadow register and the value post−increm-
ented on each iteration. The XAR7 register is not modified. For all other instructions,
the address is not incremented even when repeated.

Instructions that use this addressing mode:
MAC P,loc16,*XAR7 ; ACC = ACC + P << PM,
 ; P = [loc16] * ProgSpace[*XAR7]
DMAC ACC:P,loc32,*XAR7 ; ACC = ([loc32].MSW * ProgSpace[*XAR7].MSW) >> PM,
 ; P = ([loc32].LSW * ProgSpace[*XAR7].MSW) >> PM
QMACL P,loc32,*XAR7 ; ACC = ACC + P >> PM,
 ; P = ([loc32] * ProgSpace[*XAR7]) >> 32
IMACL P,loc32,*XAR7 ; ACC = ACC + P,
 ; P = ([loc32] * ProgSpace[*XAR7]) << PM
PREAD loc16,*XAR7 ; [loc16] = ProgSpace[*XAR7]
PWRITE *XAR7,loc16 ; ProgSpace[*XAR7] = [loc16]

Syntax Description

*XAR7++ 22BitProgAddr(21:0) = XAR7,
if(16−bit operation) XAR7 = XAR7 + 1,
if(32−bit operation) XAR7 = XAR7 + 2

Note: If instruction is repeated, the address is post−incremented as normal.

Instructions that use this addressing mode:
MAC P,loc16,*XAR7++ ; ACC = ACC + P << PM,
 ; P = [loc16] * ProgSpace[*XAR7++]
DMAC ACC:P,loc32,*XAR7++ ; ACC=([loc32].MSW * ProgSpace[*XAR7++].MSW)>>PM,
 ; P=([loc32].LSW * ProgSpace[*XAR7++].MSW)>>PM
QMACL P,loc32,*XAR7++ ; ACC = ACC + P >> PM,
 ; P = ([loc32] * ProgSpace[*XAR7++]) >> 32
IMACL P,loc32,*XAR7++ ; ACC = ACC + P,
 ; P = ([loc32] * ProgSpace[*XAR7++]) << PM

Byte Addressing Modes

5-31C28x Addressing Modes

5.10 Byte Addressing Modes

Syntax Description

*+XARn[AR0]

*+XARn[AR1]

*+XARn[3bit]

32BitDataAddr(31:0) = XARn + Offset (Offset =
AR0/AR1/3bit)
if(Offset == Even Value)
 Access LSByte Of 16−bit Memory Location;
 Leave MSByte untouched;
if(Offset == Odd Value)
 Access MSByte Of 16−bit Memory Location;
 Leave LSByte untouched;

Note: For all other addressing modes, only the LSByte of the addressed location is ac-
cessed, the MSByte is left untouched.

Byte Addressing Modes

 5-32

Instructions that use this addressing mode:
MOVB AX.LSB,loc16 ; if(address mode == *+XARn[AR0/AR1/3bit])
 ; if(offset == even)
 ; AX.LSB = [loc16].LSB;
 ; AX.MSB = 0x00;
 ; if(offset == odd)
 ; AX.LSB = [loc16].MSB;
 ; AX.MSB = 0x00;
 ; else
 ; AX.LSB = [loc16].LSB;
 ; AX.MSB = 0x00;
MOVB AX.MSB,loc16 ; if(address mode == *+XARn[AR0/AR1/3bit])
 ; if(offset == even)
 ; AX.LSB = untouched;
 ; AX.MSB = [loc16].LSB;
 ; if(offset == odd)
 ; AX.LSB = untouched;
 ; AX.MSB = [loc16].MSB;
 ; else
 ; AX.LSB = untouched;
 ; AX.MSB = [loc16].LSB;
MOVB loc16,AX.LSB ; if(address mode == *+XARn[AR0/AR1/3bit])
 ; if(offset == even)
 ; [loc16].LSB = AX.LSB
 ; [loc16].MSB = untouched;
 ; if(offset == odd)
 ; [loc16].LSB = untouched;
 ; [loc16].MSB = AX.LSB;
 ; else
 ; [loc16].LSB = AX.LSB;
 ; [loc16].MSB = untouched;
MOVB loc16,AX.MSB ; if(address mode == *+XARn[AR0/AR1/3bit])
 ; if(offset == even)
 ; [loc16].LSB = AX.MSB
 ; [loc16].MSB = untouched;
 ; if(offset == odd)
 ; [loc16].LSB = untouched;
 ; [loc16].MSB = AX.MSB;
 ; else
 ; [loc16].LSB = AX.MSB;

 ; [loc16].MSB = untouched;

Alignment of 32-Bit Operations

5-33C28x Addressing Modes

5.11 Alignment of 32-Bit Operations

All 32-bit reads and writes to memory are aligned at the memory interface to
an even address boundary with the least significant word of the 32-bit data
aligned to the even address. The output of the address generation unit does
not force alignment, hence pointer values retain their values. For example:

MOVB AR0,#5 ; AR0 = 5

MOVL *AR0,ACC ; AL −> address 0x000004

; AH −> address 0x000005

; AR0 = 5

The programmer must take the above into account when generating address-
es that are not aligned to an even boundary.

32-bit operands are stored in the following order; low order bits, 0 to 15, fol-
lowed by the high order bits, 16 to 31, on the next highest 16-bit address incre-
ment (little-endian format).

6-1

C28x Assembly Language Instructions

This chapter presents summaries of the instruction set, defines special sym-
bols and notations used, and describes each instruction in detail in alphabeti-
cal order.

Topic Page

6.1 Instruction Set Summary (Organized by Function) 6-2.

6.2 Register Operations 6-4.

Chapter 6

Instruction Set Summary (Organized by Function)

 6-2

6.1 Instruction Set Summary (Organized by Function)
Note: The examples in this chapter assume that the device is already operating in

C28x Mode (OBJMODE == 1, AMODE == 0). To put the device into C28x
mode following a reset, you must first set the OBJMODE bit in ST1 by execut-
ing the �C28OBJ� (or �SETC OBJMODE�) instruction.

Table 6−1. Instruction Set Summary (Organized by Function)

Symbol Description

XARn XAR0 to XAR7 registers

ARn, ARm Lower 16-bits of XAR0 to XAR7 registers

ARnH Upper 16-bits of XAR0 to XAR7 registers

ARPn 3-bit auxiliary register pointer, ARP0 to ARP7

ARP0 points to XAR0 and ARP7 points to XAR7

AR(ARP) Lower 16-bits of auxiliary register pointed to by ARP

XAR(ARP) Auxiliary registers pointed to by ARP

AX Accumulator high (AH) and low (AL) registers

Immediate operand

PM Product shift mode (+4,1,0,−1,−2,−3,−4,−5,−6)

PC Program counter

~ Bitwise compliment

[loc16] Contents of 16-bit location

0:[loc16] Contents of 16-bit location, zero extended

S:[loc16] Contents of 16-bit location, sign extended

[loc32] Contents of 32-bit location

0:[loc32] Contents of 32-bit location, zero extended

S:[loc32] Contents of 32-bit location, sign extended

7bit 7-bit immediate value

0:7bit 7-bit immediate value, zero extended

S:7bit 7-bit immediate value, sign extended

8bit 8-bit immediate value

0:8bit 8-bit immediate value, zero extended

Instruction Set Summary (Organized by Function)

6-3C28x Assembly Language Instructions

Table 6−1. Instruction Set Summary (Organized by Function) (Continued)

Symbol Description

S:8bit 8-bit immediate value, sign extended

10bit 10-bit immediate value

0:10bit 10-bit immediate value, zero extended

16bit 16-bit immediate value

0:16bit 16-bit immediate value, zero extended

S:16bit 16-bit immediate value, sign extended

22bit 22-bit immediate value

0:22bit 22-bit immediate value, zero extended

LSb Least Significant bit

LSB Least Significant Byte

LSW Least Significant Word

MSb Most Significant bit

MSB Most Significant Byte

MSW Most Significant Word

OBJ OBJMODE bit state for which instruction is valid

N Repeat count (N = 0,1,2,3,4,5,6,7,....)

{ } Optional field

= Assignment

== Equivalent to

Register Operations

 6-4

6.2 Register Operations

Note: The examples in this chapter assume that the device is already operating in
C28x Mode (OBJMODE == 1, AMODE == 0). To put the device into C28x mode
following a reset, you must first set the OBJMODE bit in ST1 by executing the
�C28OBJ� (or �SETC OBJMODE�) instruction.

Table 6−2. Register Operations

Mnemonic Description Page

XARn Register Operations (XAR0−XAR7)

ADDB XARn,#7bit Add 7-bit constant to auxiliary register 6-33

ADRK #8bit Add 8-bit constant to current auxiliary register 6-42

CMPR 0/1/2/3 Compare auxiliary registers 6-82

MOV AR6/7,loc16 Load auxiliary register 6-160

MOV loc16,ARn Store 16-bit auxiliary register 6-168

MOV XARn,PC Save the current program counter 6-182

MOVB XARn,#8bit Load auxiliary register with 8-bit value 6-200

MOVB AR6/7,#8bit Load auxiliary register with an 8-bit constant 6-188

MOVL XARn,loc32 Load 32-bit auxiliary register 6-214

MOVL loc32,XARn Store 32-bit auxiliary register 6-210

MOVL XARn,#22bit Load 32-bit auxiliary register with constant value 6-215

MOVZ ARn,loc16 Load lower half of XARn and clear upper half 6-225

SBRK #8bit Subtract 8-bit constant from current auxiliary register 6-319

SUBB XARn,#7bit Subtract 7-bit constant from auxiliary register 6-342

DP Register Operations

MOV DP,#10bit Load data-page pointer 6-162

MOVW DP,#16bit Load the entire data page 6-223

MOVZ DP,#10bit Load data page and clear high bits 6-226

SP Register Operations

ADDB SP,#7bit Add 7-bit constant to stack pointer 6-32

POP ACC Pop ACC register from stack 6-267

POP AR1:AR0 Pop AR1 & AR0 registers from stack 6-268

POP AR1H:AR0H Pop AR1H & AR0H registers from stack 6-269

Register Operations

6-5C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

SP Register Operations (Continued)

POP AR3:AR2 Pop AR3 & AR2 registers from stack 6-268

POP AR5:AR4 Pop AR5 & AR4 registers from stack 6-268

POP DBGIER Pop DBGIER register from stack 6-270

POP DP:ST1 Pop DP & ST1 registers on stack 6-272

POP DP Pop DP register from stack 6-271

POP IFR Pop IFR register from stack 6-273

POP loc16 Pop �loc16� data from stack 6-274

POP P Pop P register from stack 6-275

POP RPC Pop RPC register from stack 6-276

POP ST0 Pop ST0 register from stack 6-277

POP ST1 Pop ST1 register from stack 6-278

POP T:ST0 Pop T & ST0 registers from stack 6-279

POP XT Pop XT register from stack 6-281

POP XARn Pop auxiliary register from stack 6-280

PUSH ACC Push ACC register on stack 6-284

PUSH ARn:ARn Push ARn & ARn registers on stack 6-285

PUSH AR1H:AR0H Push AR1H & AR0H registers on stack 6-286

PUSH DBGIER Push DBGIER register on stack 6-287

PUSH DP:ST1 Push DP & ST1 registers on stack 6-289

PUSH DP Push DP register on stack 6-288

PUSH IFR Push IFR register on stack 6-290

PUSH loc16 Push �loc16� data on stack 6-291

PUSH P Push P register on stack 6-292

PUSH RPC Push RPC register on stack 6-293

PUSH ST0 Push ST0 register on stack 6-294

PUSH ST1 Push ST1 register on stack 6-295

Register Operations

 6-6

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

SP Register Operations (Continued)

PUSH T:ST0 Push T & ST0 registers on stack 6-296

PUSH XT Push XT register on stack 6-298

PUSH XARn Push auxiliary register on stack 6-297

SUBB SP,#7bit Subtract 7-bit constant from the stack pointer 6-341

AX Register Operations (AH, AL)

ADD AX,loc16 Add value to AX 6-27

ADD loc16,AX Add AX to specified location 6-28

ADDB AX,#8bit Add 8-bit constant to AX 6-31

AND AX,loc16,#16bit Bitwise AND 6-45

AND AX,loc16 Bitwise AND 6-49

AND loc16,AX Bitwise AND 6-48

ANDB AX,#8bit Bitwise AND 8-bit value 6-51

ASR AX,1..16 Arithmetic shift right 6-53

ASR AX,T Arithmetic shift right by T(3:0) = 0...15 6-54

CMP AX,loc16 Compare 6-74

CMPB AX,#8bit Compare 8-bit value 6-79

FLIP AX Flip order of bits in AX register 6-96

LSL AX,1..16 Logical shift left 6-135

LSL AX,T Logical shift left by T(3:0) = 0...15 6-136

LSR AX,1..16 Logical shift right 6-140

LSR AX,T Logical shift right by T(3:0) = 0..15 6-136

MAX AX,loc16 Find the maximum 6-149

MIN AX,loc16 Find the minimum 6-153

MOV AX,loc16 Load AX 6-161

MOV loc16,AX Store AX 6-169

MOV loc16,AX,COND Store AX register conditionally 6-170

Register Operations

6-7C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

AX Register Operations (AH, AL) (Continued)

MOVB AX,#8bit Load AX with 8-bit constant 6-189

MOVB AX.LSB,loc16 Load LSB of AX reg, MSB = 0x00 6-190

MOVB AX.MSB,loc16 Load MSB of AX reg, LSB = unchanged 6-192

MOVB loc16,AX.LSB Store LSB of AX reg 6-196

MOVB loc16,AX.MSB Store MSB of AX reg 6-198

NEG AX Negate AX register 6-245

NOT AX Complement AX register 6-256

OR AX,loc16 Bitwise OR 6-259

OR loc16,AX Bitwise OR 6-263

ORB AX,#8bit Bitwise OR 8-bit value 6-264

SUB AX,loc16 Subtract specified location from AX 6-338

SUB loc16,AX Subtract AX from specified location 6-339

SUBR loc16,AX Reverse-subtract specified location from AX 6-354

SXTB AX Sign extend LSB of AX reg into MSB

XOR AX,loc16 Bitwise exclusive OR 6-384

XORB AX,#8bit Bitwise exclusive OR 8-bit value 6-387

XOR loc16,AX Bitwise exclusive OR 6-385

16-Bit ACC Register Operations

ADD ACC,loc16 {<< 0..16} Add value to accumulator 6-25

ADD ACC,#16bit {<< 0..15} Add value to accumulator 6-22

ADD ACC,loc16 << T Add shifted value to accumulator 6-24

ADDB ACC,#8bit Add 8-bit constant to accumulator 6-30

ADDCU ACC,loc16 Add unsigned value plus carry to accumulator 6-35

ADDU ACC,loc16 Add unsigned value to accumulator 6-39

AND ACC,loc16 Bitwise AND 6-44

AND ACC,#16bit {<< 0..16} Bitwise AND 6-43

Register Operations

 6-8

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

16-Bit ACC Register Operations (Continued)

MOV ACC,loc16 {<< 0..16} Load accumulator with shift 6-159

MOV ACC,#16bit {<< 0..15} Load accumulator with shift 6-159

MOV loc16,ACC << 1..8 Save low word of shifted accumulator 6-167

MOV ACC,loc16 << T Load accumulator with shift 6-158

MOVB ACC,#8bit Load accumulator with 8-bit value 6-187

MOVH loc16,ACC << 1..8 Save high word of shifted accumulator 6-202

MOVU ACC,loc16 Load accumulator with unsigned word 6-220

SUB ACC,loc16 << T Subtract shifted value from accumulator 6-335

SUB ACC,loc16 {<< 0..16} Subtract shifted value from accumulator 6-333

SUB ACC,#16bit {<< 0..15} Subtract shifted value from accumulator 6-337

SUBB ACC,#8bit Subtract 8-bit value 6-340

SBBU ACC,loc16 Subtract unsigned value plus inverse borrow 6-317

SUBU ACC,loc16 Subtract unsigned 16-bit value 6-356

OR ACC,loc16 Bitwise OR 6-257

OR ACC,#16bit {<< 0..16} Bitwise OR 6-258

XOR ACC,loc16 Bitwise exclusive OR 6-382

XOR ACC,#16bit {<< 0..16} Bitwise exclusive OR 6-383

ZALR ACC,loc16 Zero AL and load AH with rounding 6-394

32-Bit ACC Register Operations

ABS ACC Absolute value of accumulator 6-19

ABSTC ACC Absolute value of accumulator and load TC 6-20

ADDL ACC,loc32 Add 32-bit value to accumulator 6-36

ADDL loc32,ACC Add accumulator to specified location 6-38

ADDCL ACC,loc32 Add 32-bit value plus carry to accumulator 6-34

ADDUL ACC,loc32 Add 32-bit unsigned value to accumulator 6-41

ADDL ACC,P << PM Add shifted P to accumulator 6-37

Register Operations

6-9C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

32-Bit ACC Register Operations (Continued)

ASRL ACC,T Arithmetic shift right of accumulator by T(4:0) 6-57

CMPL ACC,loc32 Compare 32-bit value 6-80

CMPL ACC,P << PM Compare 32-bit value 6-81

CSB ACC Count sign bits 6-83

LSL ACC,1..16 Logical shift left 1 to 16 places 6-133

LSL ACC,T Logical shift left by T(3:0) = 0...15 6-134

LSRL ACC,T Logical shift right by T(4:0) 6-144

LSLL ACC,T Logical shift left by T(4:0) 6-139

MAXL ACC,loc32 Find the 32-bit maximum 6-152

MINL ACC,loc32 Find the 32-bit minimum 6-155

MOVL ACC,loc32 Load accumulator with 32 bits 6-204

MOVL loc32,ACC Store 32-bit accumulator 6-206

MOVL P,ACC Load P from the accumulator 6-212

MOVL ACC,P << PM Load the accumulator with shifted P 6-205

MOVL loc32,ACC,COND Store ACC conditionally 6-207

NORM ACC,XARn++/−− Normalize ACC and modify selected auxiliary register. 6-253

NORM ACC,*ind C2XLP compatible Normalize ACC operation 6-251

NEG ACC Negate ACC 6-244

NEGTC ACC If TC is equivalent to 1, negate ACC 6-248

NOT ACC Complement ACC 6-255

ROL ACC Rotate ACC left 6-310

ROR ACC Rotate ACC right 6-311

SAT ACC Saturate ACC based on OVC value 6-313

SFR ACC,1..16 Shift accumulator right by 1 to 16 places 6-325

SFR ACC,T Shift accumulator right by T(3:0) = 0...15 6-326

SUBBL ACC,loc32 Subtract 32-bit value plus inverse borrow 6-343

Register Operations

 6-10

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

32-Bit ACC Register Operations (Continued)

SUBCU ACC,loc16 Subtract conditional 16-bit value 6-345

SUBCUL ACC,loc32 Subtract conditional 32-bit value 6-347

SUBL ACC,loc32 Subtract 32-bit value 6-350

SUBL loc32,ACC Subtract 32-bit value 6-353

SUBL ACC,P << PM Subtract 32-bit value 6-351

SUBRL loc32,ACC Reverse-subtract specified location from ACC 6-355

SUBUL ACC,loc32 Subtract unsigned 32-bit value 6-357

TEST ACC Test for accumulator equal to zero 6-362

64-Bit ACC:P Register Operations

ASR64 ACC:P,#1..16 Arithmetic shift right of 64-bit value 6-55

ASR64 ACC:P,T Arithmetic shift right of 64-bit value by T(5:0) 6-56

CMP64 ACC:P Compare 64-bit value 6-77

LSL64 ACC:P,1..16 Logical shift left 1 to 16 places 6-137

LSL64 ACC:P,T 64-bit logical shift left by T(5:0) 6-138

LSR64 ACC:P,#1..16 64-bit logical shift right by 1 to 16 places 6-142

LSR64 ACC:P,T 64-bit logical shift right by T(5:0) 6-143

NEG64 ACC:P Negate ACC:P 6-246

SAT64 ACC:P Saturate ACC:P based on OVC value 6-314

P or XT Register Operations (P, PH, PL, XT, T, TL)

ADDUL P,loc32 Add 32-bit unsigned value to P 6-40

MAXCUL P,loc32 Conditionally find the unsigned maximum 6-150

MINCUL P,loc32 Conditionally find the unsigned minimum 6-154

MOV PH,loc16 Load the high half of the P register 6-177

MOV PL,loc16 Load the low half of the P register 6-178

MOV loc16,P Store lower half of shifted P register 6-174

MOV T,loc16 Load the upper half of the XT register 6-180

Register Operations

6-11C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

P or XT Register Operations (P, PH, PL, XT, T, TL) (Continued)

MOV loc16,T Store the T register 6-175

MOV TL,#0 Clear the lower half of the XT register 6-181

MOVA T,loc16 Load the T register and add the previous product 6-183

MOVAD T,loc16 Load T register 6-185

MOVDL XT,loc32 Store XT and load new XT 6-201

MOVH loc16,P Save the high word of the P register 6-203

MOVL P,loc32 Load the P register 6-213

MOVL loc32,P Store the P register 6-209

MOVL XT,loc32 Load the XT register 6-216

MOVL loc32,XT Store the XT register 6-211

MOVP T,loc16 Load the T register and store P in the accumulator 6-217

MOVS T,loc16 Load T and subtract P from the accumulator 6-218

MOVX TL,loc16 Load lower half of XT with sign extension 6-224

SUBUL P,loc32 Subtract unsigned 32-bit value 6-358

16x16 Multiply Operations

DMAC ACC:P,loc32,*XAR7/++ 16-bit dual multiply and accumulate 6-86

MAC P,loc16,0:pma Multiply and accumulate 6-145

MAC P,loc16,*XAR7/++ Multiply and Accumulate 6-147

MPY P,T,loc16 16 X 16 multiply 6-230

MPY P,loc16,#16bit 16 X 16-bit multiply 6-229

MPY ACC,T,loc16 16 X 16-bit multiply 6-228

MPY ACC,loc16,#16bit 16 X 16-bit multiply 6-227

MPYA P,loc16,#16bit 16 X 16-bit multiply and add previous product 6-231

MPYA P,T,loc16 16 X 16-bit multiply and add previous product 6-233

MPYB P,T,#8bit Multiply signed value by unsigned 8-bit constant 6-236

MPYS P,T,loc16 16 X 16-bit multiply and subtract 6-237

Register Operations

 6-12

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

16x16 Multiply Operations (Continued)

MPYB ACC,T,#8bit Multiply by 8-bit constant 6-235

MPYU ACC,T,loc16 16 X 16-bit unsigned multiply 6-240

MPYU P,T,loc16 Unsigned 16 X 16 multiply 6-239

MPYXU P,T,loc16 Multiply signed value by unsigned value 6-242

MPYXU ACC,T,loc16 Multiply signed value by unsigned value 6-241

SQRA loc16 Square value and add P to accumulator 6-329

SQRS loc16 Square value and subtract from accumulator 6-331

XMAC P,loc16,*(pma) C2xLP source-compatible multiply and accumulate 6-378

XMACD P,loc16,*(pma) C2xLP source-compatible multiply and accumulate with
data move

6-380

32x32 Multiply Operations

IMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (lower half) 6-100

IMPYAL P,XT,loc32 Signed 32-bit multiply (lower half) and add previous P 6-103

IMPYL P,XT,loc32 Signed 32 X 32-bit multiply (lower half) 6-106

IMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (lower half) 6-105

IMPYSL P,XT,loc32 Signed 32-bit multiply (lower half) and subtract P 6-107

IMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (lower half) 6-109

QMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (upper half) 6-300

QMPYAL P,XT,loc32 Signed 32-bit multiply (upper half) and add previous P 6-302

QMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (upper half) 6-305

QMPYL P,XT,loc32 Signed 32 X 32-bit multiply (upper half) 6-304

QMPYSL P,XT,loc32 Signed 32-bit multiply (upper half) and subtract pre-
vious P

6-306

QMPYUL P,XT,loc32 Unsigned 32 X 32-bit multiply (upper half) 6-308

QMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (upper half) 6-309

Direct Memory Operations

ADD loc16,#16bitSigned Add constant to specified location 6-29

Register Operations

6-13C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

Direct Memory Operations (Continued)

AND loc16,#16bitSigned Bitwise AND 6-50

CMP loc16,#16bitSigned Compare 6-75

DEC loc16 Decrement by 1 6-84

DMOV loc16 Data move contents of 16-bit location 6-89

INC loc16 Increment by 1 6-113

MOV *(0:16bit),loc16 Move value 6-156

MOV loc16,*(0:16bit) Move value 6-165

MOV loc16,#16bit Save 16-bit constant 6-164

MOV loc16,#0 Clear 16-bit location 6-166

MOVB loc16,#8bit,COND Store byte conditionally 6-194

OR loc16,#16bit Bitwise OR 6-262

TBIT loc16,#bit Test bit 6-359

TBIT loc16,T Test bit specified by T register 6-360

TCLR loc16,#bit Test and clear specified bit 6-361

TSET loc16,#bit Test and set specified bit 6-365

XOR loc16,#16bit Bitwise exclusive OR 6-386

IO Space Operations

IN loc16,*(PA) Input data from port 6-111

OUT *(PA),loc16 Output data to port 6-265

UOUT *(PA),loc16 Unprotected output data to I/O port 6-366

Program Space Operations

PREAD loc16,*XAR7 Read from program memory 6-282

PWRITE *XAR7,loc16 Write to program memory 6-299

XPREAD loc16,*AL C2xLP source-compatible program read 6-389

XPREAD loc16,*(pma) C2xLP source-compatible program read 6-388

XPWRITE *AL,loc16 C2xLP source-compatible program write 6-390

Register Operations

 6-14

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

Branch/Call/Return Operations

B 16bitOff,COND Conditional branch 6-58

BANZ 16bitOff,ARn−− Branch if auxiliary register not equal to zero 6-59

BAR 16bOf,ARn,ARn,EQ/NEQ Branch on auxiliary register comparison 6-60

BF 16bitOff,COND Branch fast 6-61

FFC XAR7,22bitAddr Fast function call 6-95

IRET Interrupt return 6-116

LB 22bitAddr Long branch 6-120

LB *XAR7 Long indirect branch 6-119

LC 22bitAddr Long call immediate 6-122

LC *XAR7 Long indirect call 6-121

LCR 22bitAddr Long call using RPC 6-123

LCR *XARn Long indirect call using RPC 6-124

LOOPZ loc16,#16bit Loop while zero 6-127

LOOPNZ loc16,#16bit Loop while not zero 6-125

LRET Long return 6-130

LRETE Long return and enable interrupts 6-131

LRETR Long return using RPC 6-132

RPT #8bit/loc16 Repeat next instruction 6-312

SB 8bitOff,COND Short conditional branch 6-316

SBF 8bitOff,EQ/NEQ/TC/NTC Short fast conditional branch 6-318

XB pma C2XLP source-compatible branch 6-369

XB pma,COND C2XLP source-compatible conditional branch 6-370

XB pma,*,ARPn C2XLP source-compatible branch function call 6-369

XB *AL C2XLP source-compatible function call 6-368

XBANZ pma,*ind{,ARPn} C2XLP source-compatible branch if ARn is not zero 6-372

XCALL pma C2XLP source-compatible call 6-375

Register Operations

6-15C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

Branch/Call/Return Operations (Continued)

XCALL pma,COND C2XLP source-compatible conditional call 6-376

XCALL pma,*,ARPn C2XLP source-compatible call with ARP modification 6-375

XCALL *AL C2XLP source-compatible indirect call 6-374

XRET Alias for XRETC UNC 6-391

XRETC COND C2XLP source-compatible conditional return 6-392

Interrupt Register Operations

AND IER,#16bit Bitwise AND to disable specified CPU interrupts 6-46

AND IFR,#16bit Bitwise AND to clear pending CPU interrupts 6-47

IACK #16bit Interrupt acknowledge 6-97

INTR INT1/../INT14
NMI
EMUINT
DLOGINT
RTOSINT

Emulate hardware interrupts 6-114

MOV IER,loc16 Load the interrupt-enable register 6-163

MOV loc16,IER Store interrupt enable register 6-172

OR IER,#16bit Bitwise OR 6-260

OR IFR,#16bit Bitwise OR 6-261

TRAP #0..31 Software trap 6-363

Status Register Operations (ST0, ST1)

CLRC Mode Clear status bits 6-72

CLRC XF Clear the XF status bit and output signal 6-71

CLRC

C28ADDR

AMODE Clear the AMODE bit

Clear the AMODE status bit

6-67

6-64

CLRC

C27OBJ

OBJMODE Clear the OBJMODE bit

Clear the OBJMODE bit

6-69

6-63

CLRC

C27MAP

M0M1MAP Clear the M0M1MAP bit

Set the M0M1MAP bit

6-68

6-62

Register Operations

 6-16

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

Status Register Operations (ST0, ST1) (Continued)

CLRC

ZAP

OVC

OVC

Clear OVC bits

Clear overflow counter

6-70

6-395

DINT Disable maskable interrupts (set INTM bit) 6-85

EINT Enable maskable interrupt (clear INTM bit) 6-92

MOV PM,AX Load product shift mode bits PM = AX(2:0) 6-179

MOV OVC,loc16 Load the overflow counter 6-176

MOVU OVC,loc16 Load overflow counter with unsigned value 6-222

MOV loc16,OVC Store the overflow counter 6-173

MOVU loc16,OVC Store the unsigned overflow counter 6-221

SETC Mode Set multiple status bits 6-320

SETC XF Set XF bit and output signal 6-324

SETC

C28MAP

M0M1MAP Set M0M1MAP bit

Set the M0M1MAP bit

6-65

6-322

SETC

C28OBJ

OBJMODE Set OBJMODE bit

Set the OBJMODE bit

6-66

6-323

SETC

LPADDR

AMODE Set AMODE bit

Alias for SETC AMODE 6-129

SPM PM Set product shift mode bits 6-327

Miscellaneous Operations

ABORTI Abort interrupt 6-18

ASP Align stack pointer 6-52

EALLOW Enable access to protected space 6-90

IDLE Put processor in IDLE mode 6-98

NASP Un-align stack pointer 6-243

NOP {*ind} No operation with optional indirect address modification 6-250

ZAPA Zero accumulator P register and OVC 6-396

EDIS Disable access to protected space 6-91

Register Operations

6-17C28x Assembly Language Instructions

Table 6−2. Register Operations (Continued)

Mnemonic PageDescription

Miscellaneous Operations (Continued)

ESTOP0 Emulation Stop 0 6-93

ESTOP1 Emulation Stop 1 6-94

ABORTI

 6-18

ABORTI Abort Interrupt

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ABORTI 0000 0000 0000 0001 X − 2

Operands None

Description Abort interrupt. This instruction is available for emulation purposes. Generally,
a program uses the IRET instruction to return from an interrupt. The IRET
instruction restores all of the values that were saved to the stack during the
automatic context save. In restoring status register ST1 and the debug status
register (DBGSTAT), IRET restores the debug context that was present before
the interrupt.

In some target applications, you might have interrupts that must not be returned
from by the IRET instruction. Not using IRET can cause a problem for the
emulation logic, because the emulation logic assumes that the original debug
context will be restored. The abort interrupt (ABORTI) instruction is provided as
a means to indicate that the debug context will not be restored and the debug
logic needs to be reset to its default state. As part of its operation, the ABORTI
instruction:

� Sets the DBGM bit in ST1. This disables debug events.

� Modifies select bits in the DBGSTAT register. This effect is a resetting of
the debug context. If the CPU was in the debug-halt state before the
interrupt occurred, the CPU does not halt when the interrupt is aborted.

The ABORTI instruction does not modify the DBGIER, the IER, the INTM bit or
any analysis registers (for example, registers used for breakpoints, watch
points, and data logging).

Flags and
Modes

DBGM The DBGM bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction,
it resets the repeat counter (RPTC) and executes only once.

ABS ACC

6-19

ABS ACC Absolute Value of Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ABS ACC 1111 1111 0101 0110 X − 1

Operands ACC Accumulator register

Description The content of the ACC register is replaced with its absolute value:

if(ACC = 0x8000 0000)
 V = 1;
 If (OVM = 1)
 ACC = 0x7FFF FFFF;
 else
 ACC = 0x8000 0000;
else
 if(ACC < 0)
 ACC = −ACC;

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C C is cleared by this operation.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value and V is set. Otherwise, V is not affected.

OVM If (ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value, and the ACC value after the operation depends on the state
of OVM: If OVM is cleared, ACC will be filled with 0x8000 0000. If OVM is set
ACC will be saturated to 0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Take absolute value of VarA, make sure value is saturated:

 MOVL ACC,@VarA ; Load ACC with contents of VarA

 SETC OVM ; Turn overflow mode on

 ABS ACC ; Absolute of ACC and saturate

 MOVL @VarA,ACC ; Store result into VarA

ABSTC ACC

 6-20

ABSTC ACC Absolute Value of Accumulator and Load TC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ABSTC ACC 0101 0110 0101 1111 1 − 1

Operands ACC Accumulator register

Description Replace the content of the ACC register with its absolute value and load the
test control (TC) bit with the sign bit XORed with the previous value of the
test control bit:

if(ACC = 0x8000 0000)
 {
 If (OVM = 1)
 ACC = 0x7FFF FFFF;
 else
 ACC = 0x8000 0000;
 V = 1;
 TC = TC XOR 1;
 {
else
 {
 if(ACC < 0)
 ACC = −ACC;
 TC = TC XOR 1;
 }
C = 0;

Flags and N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.g
Modes Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The C flag bit is cleared.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value and V is set; otherwise, V is not affected.

TC If (ACC < 0) at the start of the operation, then TC = TC XOR 1; otherwise, TC
is not affected.

OVM If at the start of the operation, ACC = 0x8000 0000, then this is considered
an overflow value and the ACC value after the operation depends on OVM. If
OVM is cleared and TC == 1, ACC will be filled with 0x8000 0000. If OVM is
set and TC = 1, ACC will be saturated to 0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

ABSTC ACC

6-21

Example ; Calculate signed: Quot16 = Num16/Den16, Rem16 = Num16%Den16

 CLRC TC ; Clear TC flag, used as sign flag

 MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOV T,@AH ; Temp save Den16 in T register

 MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOVU ACC,@AH ; AH = 0, AL = Num16

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16

 MOV @Rem16,AH ; Store remainder in Rem16

 MOV ACC,@AL << 16 ; AH = Quot16, AL = 0

 NEGTC ACC ; Negate if TC = 1

 MOV @Quot16,AH ; Store quotient in Quot16

ADD ACC,#16bit<<#0..15

 6-22

ADD ACC,#16bit<<#0..15 Add Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD ACC,#16bit<<#0..15 1111 1111 0001 SHFT
CCCC CCCC CCCC CCCC

X − 1

Operands ACC Accumulator register
#16bit 16-bit immediate constant value
#0..15 Shift value (default is �<< #0� if no value specified)

Description Add the left shifted 16-bit immediate constant value to the ACC register.
The shifted value is sign extended if sign extension mode is turned on (SXM
= 1) else the shifted value is zero extended (SXM = 0). The lower bits of the
shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled

 ACC = ACC + S:16bit << shift value;

else // sign extension mode disabled

 ACC = ACC + 0:16bit << shift value;

Smart Encoding:
If #16bit is an 8-bit number and the shift is 0, then the assembler will encode
this instruction as ADDB ACC, #8bit to improve efficiency. To override this
encoding, use the ADDW ACC, #16bit instruction alias.

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else the flag is
cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else the flag is
cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit immediate constant will be
sign-extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarB << 10) + (23 << 6);
SETC SXM ; Turn sign extension mode on

ADD ACC,#16bit<<#0..15

6-23

MOV ACC,@VarB << #10 ; Load ACC with VarB left shifted by 10

ADD ACC,#23 << #6 ; Add 23 left shifted by 6 to ACC

ADD ACC,loc16 << T

 6-24

ADD ACC,loc16 << T Add Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD ACC,loc16<< T 0101 0110 0010 0011
0000 0000 LLLL LLLL

1 Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
T Upper 16 bits of the multiplicand register, XT(31:16)

Description Add to the ACC register the left-shifted contents of the 16-bit location pointed
to by the �loc16� addressing mode. The shift value is specified by the four
least significant bits of the T register, T(3:0) = shift value = 0..15. Higher order
bits of T are ignored. The shifted value is sign extended if sign extension
mode is turned on (SXM = 1) else the shifted value is zero extended
(SXM = 0). The lower bits of the shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled

 ACC = ACC + S:[loc16] << T(3:0);

else // sign extension mode disabled

 ACC = ACC + 0:[loc16] << T(3:0);

Flags and Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If OVM = 0, disabled and the operation generates a positive overflow, then the
counter is incremented; if the operation generates a negative overflow, then
the counter is decremented. If OVM = 1, enabled, then the counter is not
affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the addition. Else, the value will be
zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on

MOV T,@SA ; Load T with shift value in SA

MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA

MOV T,@SB ; Load T with shift value in SB

ADD ACC,@VarB << T ; Add to ACC shifted contents of VarB

ADD ACC,loc16 << #0..16

6-25

ADD ACC,loc16 << #0..16 Add Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD ACC,loc16<<#0 1000 0001 LLLL LLLL 1 Y N+1

ADD ACC,loc16 << #1..15 0101 0110 0000 0100
0000 SHFT LLLL LLLL

1 Y N+1

ADD ACC,loc16 << #16 0000 0101 LLLL LLLL X Y N+1

ADD ACC,loc16<<0...15 1010 SHFT LLLL LLLL 0 − N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
#0..16 Shift value (default is �<< #0� if no value specified)

Description Add the left shifted 16-bit location pointed to by the �loc16� addressing mode
to the ACC register. The shifted value is sign extended if sign extension
mode is turned on (SXM = 1) else the shifted value is zero extended
(SXM = 0). The lower bits of the shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled
 ACC = ACC + S:[loc16] << shift value;
else // sign extension mode disabled
 ACC = ACC + 0:[loc16] << shift value;

Flags and Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.
Exception: If a shift of 16 is used, the ADD instruction can set C but not clear C.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow, then
the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the addition. Else, the value will be
zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat If the operation is repeatable, then the instruction will be executed N+1
times. The state of the Z, N, C flags will reflect the final result. The V flag will
be set if an intermediate overflow occurs. The OVC flag will count
intermediate overflows, if overflow mode is disabled. If the operation is not
repeatable, the instruction will execute only once.

ADD ACC,loc16 << #0..16

 6-26

Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on

MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10

ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

ADD AX, loc16

6-27

ADD AX, loc16 Add Value to AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD AX, loc16 1001 010A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description Add the contents of the location pointed to by the �loc16� addressing mode to
the specified AX register (AH or AL) and store the result in the AX register:

AX = AX + [loc16];

Flags and
Modes

N After the addition, AX is tested for a negative condition. If bit 15 of AX is 1, then
the negative flag bit is set, otherwise it is cleared.

Z After the addition, AX is tested for a zero condition. The zero flag bit is set if the
operation results in AX = 0; otherwise it is cleared.

C If the addition generates a carry, C is set; otherwise, C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in the
positive direction. Signed negative overflow occurs if the result crosses the
max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add the contents of VarA with VarB and store in VarC

MOV AL,@VarA ; Load AL with contents of VarA

ADD AL,@VarB ; Add to AL contents of VarB

MOV @VarC,AL ; Store result in VarC

ADD loc16, AX

 6-28

ADD loc16, AX Add AX to Specified Location

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD loc16, AX 0111 001A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Add the contents of the specified AX register (AH or AL) to the location
pointed to by the �loc16� addressing mode and store the results in location
pointed to by �loc16�:

[loc16] = [loc16] + AX;

This is a read-modify-write operation.

Flags and
Modes

N After the addition, [loc16] is tested for a negative condition. If bit 15 of [loc16] is
1, then the negative flag bit is set, otherwise it is cleared.

Z After the addition, [loc16] is tested for a zero condition. The zero flag bit is set if
the operation generates [loc16] = 0; otherwise it is cleared

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in the
positive direction. Signed negative overflow occurs if the result crosses the
max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add the contents of VarA to index register AR0:

MOV AL,@VarA ; Load AL with contents of VarA

ADD @AR0,AL ; AR0 = AR0 + AL
; Add the contents of VarB to VarC:
MOV AH,@VarB ; Load AH with contents of VarB
ADD @VarC,AH ; VarC = VarC + AH

ADD loc16,#16bitSigned

6-29

ADD loc16,#16bitSigned Add Constant to Specified Location

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADD loc16,#16bitSigned 0000 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands loc16 Addressing mode (see Chapter 5)

#16bit-
Signed

16-bit immediate signed constant value

Description Add the specified signed 16-bit immediate constant to the signed 16-bit
content of the location pointed to by the �loc16� addressing mode and
store the 16-bit result in the location pointed to by �loc16�:

[loc16] = [loc16] + 16bitSigned;

Smart Encoding:
If loc16 = AL or AH and #16bitSigned is an 8-bit number then the
assembler will encode this instruction as ADDB AX, #16bitSigned to
improve efficiency. To override this encoding, use the ADDW loc16,
#16bitSigned instruction alias.

Flags and
Modes

N After the addition, if bit 15 of [loc16] is 1, then the N bit is set; else N cleared.
Modes

Z After the addition, if [loc16] is zero, the Z is set, else Z is cleared.

C If the addition generates a carry, C is set; otherwise, C is cleared.

V If an overflow occurs, V is set; otherwise, V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate:
; VarA = VarA + 10
; VarB = VarB − 3
 ADD @VarA,#10 ; VarA = VarA + 10
 ADD @VarB,#−3 ; VarB = VarB − 3

ADDB ACC,#8bit

 6-30

ADDB ACC,#8bit Add 8-bit Constant to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDB ACC,#8bit 0000 1001 CCCC CCCC X − 1

Operands ACC Accumulator register

#8bit 8-bit immediate unsigned constant value

Description Add an 8-bit, zero-extended constant to the ACC register:

ACC = ACC + 0:8bit;

Flags and Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow, then
the counter is incremented and if the operation generates a negative overflow,
then the counter is decremented. If (OVM = 1, enabled) then the counter is not
affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruc-
tion, it resets the repeat counter (RPTC) and executes only once.

Example ; Increment contents of 32-bit location VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA

ADDB ACC,#1 ; Add 1 to ACC

MOVL @VarA,ACC ; Store result back into VarA

ADDB AX, #8bitSigned

6-31

ADDB AX, #8bitSigned Add 8-bit Constant to AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDB AX, #8bitSigned 1001 110A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit-
Signed

8-bit immediate signed 2s complement constant value (-128 to 127)

Description Add the sign extended 8-bit constant to the specified AX register (AH
or AL) and store the result in the AX register:

AX = AX + S:8bit;

Flags and
Modes

N After the addition, AX is tested for a negative condition. If bit 15 of AX is 1,
then the negative flag bit is set; otherwise it is cleared.

Z After the addition, AX is tested for a zero condition. The zero flag bit is set if
the operation results in AX = 0, otherwise it is cleared

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in the
positive direction. Signed negative overflow occurs if the result crosses the
max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only
once.

Example ; Add 2 to VarA and subtract 3 from VarB:

MOV AL,@VarA ; Load AL with contents of VarA

ADDB AL,#2 ; Add to AL the value 0x0002 (2)
MOV @VarA,AL ; Store result in VarA
MOV AL,@VarB ; Load AL with contents of VarB
ADDB AL,#−3 ; Add to AL the value 0xFFFD (−3)
MOV @VarB,AL ; Store result in VarB

ADDB SP, #7bit

 6-32

ADDB SP, #7bit Add 7-bit Constant to Stack Pointer

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDB SP, #7bit 1111 1110 0CCC CCCC X − 1

Operands SP Stack pointer

#7bit 7-bit immediate unsigned constant value

Description Add a 7-bit unsigned constant to SP and store the result in SP:

SP = SP + 0:7bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction,
it resets the repeat counter (RPTC) and executes only once

Example FuncA:

 ADDB SP, #N

; Function with local variables on stack.

; Reserve N 16-bit words of space for
; local variables on stack:

 .
.
.
SUBB SP, #N ; Deallocate reserved stack space.

LRETR ; Return from function.

ADDB XARn, #7bit

6-33

ADDB XARn, #7bit Add 7-bit Constant to Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDB XARn, #7bit 1101 1nnn 0CCC CCCC X − 1

Operands XARn XAR0−XAR7, 32-bit auxiliary registers

Description Add a 7-bit unsigned constant to XARn and store the result in XARn:

XARn = XARn + 0:7bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction,
it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR1,#VarA

MOVL XAR2,*XAR1

ADDB XAR2,#10h

; Initialize XAR1 pointer with address

; of VarA

; Load XAR2 with contents of VarA

; XAR2 = VarA + 0x10

ADDCL ACC,loc32

 6-34

ADDCL ACC,loc32 Add 32-bit Value Plus Carry to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDCL ACC,loc32
0101 0110 0100 0000
xxxx xxxx LLLL LLLL 1 − 1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Add to the ACC register the 32-bit content of the location pointed to by the
�loc32� addressing mode:

ACC = ACC + [loc32] + C;

Flags and
Modes

Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the addition. If the
addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:

MOVL ACC,@VarA+0 ; Load ACC with contents of the low
; 32 bits of VarA

ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low
; 32 bits of VarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32 bits of VarA

ADDCL ACC,@VarB+2 ; Add to ACC the contents of the high
; 32 bits of VarB with carry

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

ADDCU ACC,loc16

6-35

ADDCU ACC,loc16 Add Unsigned Value Plus Carry to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDCU ACC,loc16 0000 1100 LLLL LLLL X − 1

Operands ACC Accumulator register

loc16 Addressing mode (see Chapter 5)

Description Add the 16-bit contents of the location pointed to by the �loc16� addressing
mode, zero extended, plus the content of the carry flag bit to the ACC
register:

ACC = ACC + 0:[loc16] + C;

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the addition. If the
addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the
operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow

ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow

ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow

ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16

ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry

ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

ADDL ACC,loc32

 6-36

ADDL ACC,loc32 Add 32-bit Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDL ACC,loc32 0000 0111 LLLL LLLL X Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Add to the ACC register the 32-bit content of the location pointed to by the
�loc32� addressing mode:

ACC = ACC + [loc32];

Flags and
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Modes

Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example ; Calculate the 32-bit value: VarC = VarA + VarB

MOVL ACC,@VarA ; Load ACC with contents of VarA

ADDL ACC,@VarB ; Add to ACC the contents of VarB

MOVL @VarC,ACC ; Store result into VarC

ADDL ACC,P << PM

6-37

ADDL ACC,P << PM Add Shifted P to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDL ACC,P << PM 0001 0000 1010 1100 X Y N+1

Note: This instruction is an alias for the �MOVA T,loc16� operation with �loc16 = @T� addressing mode.

Operands ACC Accumulator register

P Product register

<< PM Product shift mode

Description Add to the ACC register the contents of the P register, shifted as specified by
the product shift mode (PM):

ACC = ACC + P << PM

Flags and Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows if overflow mode is disabled.

Example ; Calculate: Y = ((M*X >> 4) + (B << 11)) >> 10
; Y, M, X, B are Q15 values

SPM −4 ; Set product shift to >> 4

SETC SXM ; Enable sign extension mode

MOV T,@M ; T = M

MPY P,T,@X ; P = M * X

MOV ACC,@B << 11 ; ACC = S:B << 11

ADDL ACC,P << PM ; ACC = (M*X >> 4) + (S:B << 11)

MOVH @Y,ACC << 5 ; Store Q15 result into Y

ADDL loc32,ACC

 6-38

ADDL loc32,ACC Add Accumulator to Specified Location

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDL loc32, ACC
0101 0110 0000 0001
0000 0000 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

Description Add to the ACC register the 32-bit content of the location pointed to by the
�loc32� addressing mode:

[loc32] = [loc32] + ACC;

This is a read-modify-write operation.

Flags and
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If (OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set, the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Increment the 32-bit value VarA:

MOVB ACC,#1 ; Load ACC with 0x00000001

ADDL @VarA,ACC ; VarA = VarA + ACC

ADDU ACC,loc16

6-39

ADDU ACC,loc16 Add Unsigned Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDU ACC,loc16 0000 1101 LLLL LLLL X Y N+1

Operands ACC Accumulator register

loc16 Addressing mode (see Chapter 5)

Description Add the 16-bit contents of the location pointed to by the �loc16� addressing
mode to the ACC register. The addressed location is zero extended before the
add:

ACC = ACC + 0:[loc16];

Flags and
Modes

Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If (OVM = 0, disabled) then if the operation generates a positive overflow, then
the counter is incremented and if the operation generates a negative overflow,
then the counter is decremented. If (OVM = 1, enabled) then the counter is not
affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow

ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow

ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow

ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16

ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry

ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

ADDUL P,loc32

 6-40

ADDUL P,loc32 Add 32-bit Unsigned Value to P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDUL P,loc32
0101 0110 0101 0111
0000 0000 LLLL LLLL 1 − 1

Operands P Product register

loc32 Addressing mode (see Chapter 5)

Description Add to the P register the 32-bit content of the location pointed to by the �loc32�
addressing mode. The addition is treated as an unsigned ADD operation:

P = P + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors
positive/negative overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter
monitors the carry.

Flags and
Modes

N After the addition, if bit 31 of the P register is 1, then set the N flag;
otherwise clear N.

Z After the addition, if the value of the P register is 0, then set the Z flag;
otherwise clear Z.

C If the addition generates a carry, set C; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates
an unsigned carry. The OVM mode does not affect the OVCU counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA + VarB and store result in VarC:

MOVL P,@VarA+0 ; Load P with low 32 bits of VarA

MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA

ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB

ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB

MOVL @VarC+0,P ; Store low 32-bit result into VarC

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

ADDUL ACC, loc32

6-41

ADDUL ACC, loc32 Add 32-bit Unsigned Value to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADDUL ACC, loc32
0101 0110 0101 0011
xxxx xxxx LLLL LLLL 1 Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Add to the ACC register the unsigned 32-bit content of the location pointed to
by the �loc32� addressing mode:

ACC = ACC + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors
positive/negative overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter
monitors the carry.

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates
an unsigned carry. The OVM mode does not affect the OVCU counter.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVCU will count intermediate carries.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:

MOVL ACC,@VarA+0 ; Load ACC with contents of the low
; 32 bits of VarA

ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low
; 32 bits of VarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32 bits of VarA

ADDCL ACC,@VarB+2 ; Add to ACC the contents of the high
; 32 bits of VarB with carry

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

ADRK #8bit

 6-42

ADRK #8bit Add to Current Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ADRK #8bit 1111 1100 IIII IIII X − 1

Operands #8bit 8-bit immediate constant value

Description Add the 8-bit unsigned constant to the XARn register pointed to by ARP:

XAR(ARP) = XAR(ARP) + 0:8bit;

Flags and
Modes

ARP The 3-bit ARP points to the current valid Auxiliary Register, XAR0 to XAR7.
This pointer determines which Auxiliary register is modified by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once

Example TableA: .word 0x1111

 .word 0x2222

 .word 0x3333

 .word 0x4444

FuncA:

 MOVL XAR1,#TableA

 MOVZ AR2,*XAR1

 ADRK #2

 MOVZ AR3,*XAR1

; Initialize XAR1 pointer

; Load AR2 with the 16-bit value

; pointed to by XAR1 (0x1111)

; Set ARP = 1

; Increment XAR1 by 2

; Load AR3 with the 16-bit value

; pointed to by XAR1 (0x3333)

AND ACC,#16bit << #0..16

6-43

AND ACC,#16bit << #0..16 Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND ACC, #16bit << #0..15 0011 1110 0000 SHFT
CCCC CCCC CCCC CCCC

1 − 1

AND ACC, #16bit << #16 0101 0110 0000 1000
CCCC CCCC CCCC CCCC

1 − 1

Operands ACC Accumulator register
#16bit 16-bit immediate constant value
#0..16 Shift value (default is �<< #0� if no value specified)

Description Perform a bitwise AND operation on the ACC register with the given 16-bit
unsigned constant value left shifted as specified. The value is zero extended
and lower order bits are zero filled before the AND operation. The result is
stored in the ACC register:

ACC = ACC AND (0:16bit << shift value);

Flags and

Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA AND 0x0FFFF000
MOVL ACC,@VarA ; Load ACC with contents of VarA

AND ACC,#0xFFFF << 12 ; AND ACC with 0x0FFFF000

MOVL @VarA,ACC ; Store result in VarA

AND ACC, loc16

 6-44

AND ACC, loc16 Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND ACC, loc16 1000 1001 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise AND operation on the ACC register with the zero-extended
content of the location pointed to by the �loc16� address mode. The result is
stored in the ACC register:

ACC = ACC AND 0:[loc16];

Flags and N Clear flag.g
Modes Z The load to ACC is tested for a zero condition. The zero flag bit is set if the

operation generates ACC = 0; otherwise it is cleared

Repeat This operation is repeatable. If the operation follows a RPT instruction,
then the AND instruction will be executed N+1 times. The state of the Z
and N flags will reflect the final result.

Example ; Calculate the 32-bit value: VarA = VarA AND 0:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA

AND ACC,@VarB ; AND ACC with contents of 0:VarB

MOVL @VarA,ACC ; Store result in VarA

AND AX, loc16, #16bit

6-45

AND AX, loc16, #16bit Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND AX, loc16, #16bit 1100 110A LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Perform a bitwise AND operation on the 16-bit contents of the location pointed
to by the �loc16� addressing mode with the specified 16-bit immediate
constant. The result is stored in the specified AX register:

AX = [loc16] AND 16bit;

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch if either of Bits 2 and 7 of VarA are non-zero:

AND AL,@VarA,#0x0084 ; AL = VarA AND 0x0084

SB Dest,NEQ ; Branch if result is non-zero
; Merge Bits 0,1,2 of VarA with Bits 8,9,10 of VarB and store in
; VarC in bit locations 0,1,2,3,4,5:

AND AL,@VarA,#0x0007 ; Keep bits 0,1,2 of VarA
AND AH,@VarB,#0x0700 ; Keep bits 8,9,10 of VarB
LSR AH,#5 ; Scale back bits 8,9,10 to bits 3,4,5
OR AL,@AH ; Merge bits
MOV @VarC,AL ; Store result in VarC

AND IER,#16bit

 6-46

AND IER,#16bit Bitwise AND to Disable Specified CPU Interrupts

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND IER,#16bit 0111 0110 0010 0110
CCCC CCCC CCCC CCCC

X − 2

Operands IER Interrupt enable register

#16bit 16-bit immediate constant value (0x0000 to 0xFFFF)

Description Disable specific interrupts by performing a bitwise AND operation with the IER
register and the 16-bit immediate value. The result is stored in the IER
register:

IER = IER AND #16bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Disable INT1 and INT6 only. Do not modify state of other

; interrupts enable:
 AND IER,#0xFFBE ; Disable INT1 and INT6

AND IFR,#16bit

6-47

AND IFR,#16bit Bitwise AND to Clear Pending CPU Interrupts

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND IFR,#16bit 0111 0110 0010 1111
CCCC CCCC CCCC CCCC

X − 2

Operands IFR Interrupt flag register
#16bit 16-bit immediate constant value (0x0000 to 0xFFFF)

Description Clear specific pending interrupts by performing a bitwise AND operation with
the IFR register and the 16-bit immediate value. The result of the AND
operation is stored in the IFR register:

IFR = IFR AND #16bit;

Note: Interrupt hardware has priority over CPU instruction operation in cases where the
interrupt flag is being simultaneously modified by the hardware and the instruction.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Clear the contents of the IFR register. Disables all
; pending interrupts:
 AND IFR,#0x0000 ; Clear IFR register

AND loc16, AX

 6-48

AND loc16, AX Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND loc16, AX 1100 000A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Perform a bitwise AND operation on the contents of the location pointed to by
the �loc16� addressing mode with the specified AX register. The result is
stored in location pointed to by �loc16�:

[loc16] = [loc16] AND AX;

This is a read-modify-write operation.

Flags and
Modes

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1,
then the negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates ([loc16] = 0); otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA with VarB and store in VarB:

MOV AL,@VarA ; Load AL with contents of VarA

AND @VarB,AL ; VarB = VarB AND AL

AND AX, loc16

6-49

AND AX, loc16 Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND AX, loc16 1100 111A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise AND operation on the contents of the specified AX register
with the 16-bit contents of the location pointed to by the �loc16� addressing
mode. The result is stored in the AX register:

AX = AX AND 16bit;

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA and VarB and branch if non-zero:

MOV AL,@VarA ; Load AL with contents of VarA

AND AL,@VarB ; AND AL with contents of VarB
SB Dest,NEQ ; Branch if result is non-zero

AND loc16,#16bitSigned

 6-50

AND loc16,#16bitSigned Bitwise AND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

AND loc16,#16bitSigned 0001 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands loc16 Addressing mode (see Chapter 5)

#16bitSigned 16-bit signed immediate constant value

Description Perform a bitwise AND operation on the 16-bit content of the location
pointed to by the �loc16� addressing mode and the specified 16-bit
immediate constant. The result is stored in the location pointed to by
�loc16�:

[loc16] = [loc16] AND 16bit;

Smart Encoding:
If loc16 = AH or AL and #16bitSigned is an 8-bit number, then the
assembler will encode this instruction as ANDB AX, #8-bit to improve
efficiency. To override this, use the ANDW AX, #16bitSigned
instruction alias.

Flags and
Modes

N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.

Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only
once.

Example ; Clear Bits 3 and 11 of VarA:

; VarA = VarA AND #~(1 << 3 | 1 << 11)

AND @VarA,#~(1 << 3 | 1 << 11) ; Clear bits 3 and 11 of VarA

ANDB AX, #8bit

6-51

ANDB AX, #8bit Bitwise AND 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ANDB AX, #8bit 1001 000A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit 8-bit immediate constant value

Description Perform a bitwise AND operation with the content of the specified AX register
(AH or AL) with the given 8-bit unsigned immediate constant zero extended.
The result is stored in AX:

AX = AX AND 0:8bit;

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add VarA to VarB, keep LSByte and store result in VarC:

MOV AL,@VarA ; Load AL with contents of VarA

ADD AL,@VarB ; Add to AL contents of VarB
ANDB AL,#0xFF ; AND contents of AL with 0x00FF
MOV @VarC,AL ; Store result in VarC

ASP

 6-52

ASP Align Stack Pointer

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASP 0111 0110 0001 1011 X − 1

Operands None

Description Ensure that the stack pointer (SP) is aligned to an even address. If the least
significant bit of SP is 1, SP points to an odd address and must be moved by
incrementing SP by 1. The SPA bit is set as a record of this alignment. If
instead the ASP instruction finds that the SP already points to an even
address, SP is left unchanged and the SPA bit is cleared to indicate that no
alignment has taken place. In either case, the change to the SPA bit is made in
the decode 2 phase of the pipeline.

if(SP = odd)
 SP = SP + 1;
 SPA = 1;else
 SPA = 0;

If you wish to undo a previous alignment by the ASP instruction, use the NASP
instruction.

Flags and
Modes

SPA If SP holds an odd address before the operation, SPA is set; otherwise, SPA is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Alignment of stack pointer in interrupt service routine:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
 .
 .

INTxService:
 ASP ; Align stack pointer
 .
 .
 .
 NASP ; Re-align stack pointer
 IRET ; Return from interrupt.

ASR AX,#1...16

6-53

ASR AX,#1...16 Arithmetic Shift Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASR AX,#1...16 1111 1111 101A SHFT X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

1�16 Shift value

Description Perform an arithmetic right shift on the content of the specified AX register (AH
or AL) by the amount given in the �shift value� field. During the shift, the value
is sign extended and the last bit to be shifted out of the AX register is stored in
the carry status flag bit:

SIGN

C

AX

AX

Discard
other bits

Right shift
(Immediate value)

Last bit out

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the shift, if AX is 0, then the Z bit is set; otherwise it is cleared.

C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: VarC = (VarA + VarB) >> 2

MOV AL,@VarA ; Load AL with contents of VarA

ADD AL,@VarB ; Add to AL contents of VarB
ASR AL,#2 ; Scale result by 2
MOV @VarC,AL ; Store result in VarC

ASR AX,T

 6-54

ASR AX,T Arithmetic Shift Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASR AX,T 1111 1111 0110 010A X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

T Upper 16 bits of the multiplicand (XT) register

Description Perform an arithmetic shift right on the content of the specified AX register as
specified by the four least significant bits of the T register, T(3:0) = shift
value = 0…15. The contents of higher order bits are ignored. During the shift,
the value is sign extended. If the T(3:0) register bits specify a shift of 0, then C
is cleared; otherwise, C is filled with the last bit to be shifted out of AX:

SIGN

C

AX

AX

Last bit out or cleared

Right shift
(Contents of T [3:0])

Discard other bits

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared. Even if the T(3:0) register bits specify a shift of 0, the value of AH or
AL is still tested for the negative condition and N is affected.

Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the
T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested for the
zero condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the
last bit to be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: VarC = VarA >> VarB;

MOV T,@VarB ; Load T with contents of VarB

MOV AL,@VarA ; Load AL with contents of VarA
ASR AL,T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

ASR64 ACC:P,#1..16

6-55

ASR64 ACC:P,#1..16 Arithmetic Shift Right of 64-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASR64 ACC:P,#1..16 0101 0110 1000 SHFT 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

#1..16 Shift value

Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the
amount specified in the shift value field. As the value is shifted, the most
significant bits are sign extended and the last bit shifted out is stored in the
carry bit flag:

SIGN

C

ACC:P

ACC:P

Right shift
(immediate value)

Discard other bits

Last bit out

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by 10:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

ASR64 ACC:P,#10 ; Arithmetic shift right ACC:P by 10

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

ASR64 ACC:P,T

 6-56

ASR64 ACC:P,T Arithmetic Shift Right of 64-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASR64 ACC:P,T 0101 0110 0010 1100 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

T Upper 16 bits of the multiplicand register (XT)

Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the
amount specified in six least significant bits of the T register, T(5:0) = 0…63.
Higher order bits are ignored. As the value is shifted, the most significant bits
are sign extended. If T specifies a shift of 0, then C is cleared; otherwise, C is
filled with the last bit to be shifted out of the ACC:P registers:

SIGN

C

ACC:P

ACC:P

Right shift
Contents of T[5:0]

Last bit out or cleared

Discard other bits

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C If (T[5:0] = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit
value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by contents of Var16:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

MOV T,@Var16 ; Load T with shift value from Var16

ASR64 ACC:P,T ; Arithmetic shift right ACC:P by T(5:0)

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

ASRL ACC,T

6-57

ASRL ACC,T Arithmetic Shift Right of Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ASRL ACC,T 0101 0110 0001 0000 1 − 1

Operands ACC Accumulator register

T Upper 16 bits of the multiplicand (XT) register

Description Perform an arithmetic shift right on the content of the ACC register as
specified by the five least significant bits of the T register, T(4:0) = 0…31.
Higher order bits are ignored. During the shift, the value is sign extended. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of the ACC register:

SIGN

C
ACC

ACC

Last bit out or cleared

Discard other bits

Right shift
(Contents of T[4:0]

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the zero condition and Z is affected.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the negative condition and N is affected.

C If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded
into the C flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right contents of VarA by VarB:

 MOVL ACC,@VarA ; ACC = VarA

 MOV T,@VarB ; T = VarB (shift value)

 ASRL ACC,T ; Arithmetic shift right ACC by T(4:0)

 MOVL @VarA,ACC ; Store result into VarA

B 16bitOffset,COND

 6-58

B 16bitOffset,COND Branch

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

B 16bitOffset,COND 1111 1111 1110 COND
CCCC CCCC CCCC CCCC

X − 7/4

Operands 16bit-
Offset

16-bit signed immediate constant offset value (−32768 to +32767 range)
Offset
COND Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry Set C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description Conditional branch. If the specified condition is true, then branch by adding
the signed 16-bit constant value to the current PC value; otherwise continue
execution without branching:

If (COND = true) PC = PC + signed 16-bit offset;
If (COND = false) PC = PC + 2;

Note: If (COND = true) then the instruction takes 7 cycles.
If (COND = false) then the instruction takes 4 cycles.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

BANZ 16bitOffset,ARn−−

6-59

BANZ 16bitOffset,ARn−− Branch if Auxiliary Register Not Equal to Zero

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

BANZ 16bitOffset,ARn−− 0000 0000 0000 1nnn
CCCC CCCC CCCC CCCC

X − 4/2

Operands 16bit-
Offset

16-bit signed immediate constant value

ARn Lower 16 bits of auxiliary registers XAR0 to XAR7

Description If the 16-bit content of the specified auxiliary register is not equal to 0, then the
16-bit sign offset is added to the PC value. This forces program control to the
new address (PC + 16bitOffset). The 16-bit offset is sign extended to 22 bits
before the addition. Then, the content of the auxiliary register is decremented
by 1. The upper 16 bits of the auxiliary register (ARnH) is not used in the
comparison and is not affected by the post decrement:

if(ARn != 0)
 PC = PC + signed 16-bit offset;
ARn = ARn – 1;
ARnH = unchanged;

Note: If branch is taken, then the instruction takes 4 cycles
If branch is not taken, then the instruction takes 2 cycles

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
 MOV @AR0,#(N−1) ; Repeat loop N times
Loop:
 MOVL ACC,*XAR2++ ; ACC = Array1[i]
 MOVL *XAR3++,ACC ; Array2[i] = ACC
 BANZ Loop,AR0−− ; Loop if AR0 != 0, AR0−−

BAR 16bitOffset,ARn,ARm,EQ/NEQ

 6-60

BAR 16bitOffset,ARn,ARm,EQ/NEQ Branch on Auxiliary Register Comparison

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

BAR 16bitOffset,ARn,ARm,EQ 1000 1111 10nn nmmm
CCCC CCCC CCCC CCCC

1 − 4/2

BAR 16bitOffset,ARn,ARm,NEQ 1000 1111 11nn nmmm
CCCC CCCC CCCC CCCC

1 − 4/2

Operands 16bit-
Offset

16-bit signed immediate constant offset value (−32768 to +32767 range)

ARn Lower 16 bits of auxiliary registers XAR0 to XAR7
ARm Lower 16 bits of auxiliary registers XAR0 to XAR7

Syntax Description Condition Tested
NEQ Not Equal To ARn != ARm
EQ Equal To ARn = ARm

Description Compare the 16-bit contents of the two auxiliary registers ARn and ARm
registers and branch if the specified condition is true; otherwise continue
execution without branching:

If (tested condition = true) PC = PC + signed 16-bit offset;
If (tested condition = false) PC = PC + 2;

Note: If (tested condition = true) then the instruction takes 4 cycles.
If (tested condition = false) then the instruction takes 2 cycles.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; String compare:
 MOVL XAR2,#StringA ; XAR2 points to StringA
 MOVL XAR3,#StringB ; XAR3 points to StringB
 MOV @AR4,#0 ; AR4 = 0
Loop:
 MOVZ AR0,*XAR2++ ; AR0 = StringA[i]
 MOVZ AR1,*XAR3++ ; AR1 = StringB[i], i++
 BAR Exit,AR0,AR4,EQ ; Exit if StringA[i] = 0
 BAR Loop,AR0,AR1,EQ ; Loop if StringA[i] = StringB[i]
NotEqual: ; StringA and B not the same
 .
Exit: ; StringA and B the same

BF 16bitOffset,COND

6-61

BF 16bitOffset,COND Branch Fast

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

BF 16bitOffset,COND 0101 0110 1100 COND
CCCC CCCC CCCC CCCC

1 − 4/4

Operands 16bit-
Offset

16-bit signed immediate constant offset value (−32768 to +32767 range)

COND Conditional codes:
COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry Set C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description Fast conditional branch. If the specified condition is true, then branch by
adding the signed 16-bit constant value to the current PC value; otherwise
continue execution without branching:

If (COND = true) PC = PC + signed 16-bit offset;
If (COND = false) PC = PC + 2;

Note: The branch fast (BF) instruction takes advantage of dual prefetch queue on the
C28x core that reduces the cycles for a taken branch from 7 to 4:

If (COND = true) then the instruction takes 4 cycles.
If (COND = false) then the instruction takes 4 cycles.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

C27MAP

 6-62

C27MAP Set the M0M1MAP Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

C27MAP 0101 0110 0011 1111 X − 5
Note: This instruction is an alias for the �CLRC M0M1MAP� operation.

Operands None

Description Clear the M0M1MAP status bit, configuring the mapping of the M0 and M1
memory blocks for C27x object-compatible operation. The memory blocks
are mapped as follows:

M0 M0

M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

00 0400

00 07FF

C27x Compatible Mapping
(M0M1MAP = 0)

M1 M0

M1

Program Space Data Space
00 0000

00 0400

00 07FF

M0M1

Note: The pipeline is flushed when this instruction is executed.

Flags and
Modes

M0M1M
AP

The M0M1MAP bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x object-compatible mode:

Reset:
 C27OBJ ; Enable C27x Object Mode
 C28ADDR ; Enable C27x/C28x Address Mode
 .c28_amode ; Tell assembler we are using C27x/C28x addressing
 C27MAP ; Enable C27x Mapping Of M0 and M1 blocks
 .
 .

C27OBJ

6-63

C27OBJ Clear the OBJMODE Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

C27OBJ 0101 0110 0011 0110 X − 5
Note: This instruction is an alias for the �CLRC OBJMODE� operation.

Operands None

Description Clear the OBJMODE status bit in Status Register ST1, configuring the device
to execute C27x object code. This is the default mode of the processor after
reset.

Note: The pipeline is flushed when this instruction is executed.

Flags and
Modes

Clear the OBJMODE bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x:
Reset:
 C27OBJ ; Enable C27x Object Mode
 C28ADDR ; Enable C27x/C28x Address Mode
 .c28_amode ; Tell assembler we are in C27x/C28x addr mode
 C27MAP ; Enable C27x Mapping Of M0 and M1 blocks
 .
 .

C28ADDR

 6-64

C28ADDR Clear the AMODE Status Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

C28ADDR 0101 0110 0001 0110 X − 1
Note: This instruction is an alias for the �CLRC AMODE� operation.

Operands None

Description Clear the AMODE status bit in Status Register ST1, putting the device in
C27x/C28x addressing mode (see Chapter 5).

Note: This instruction does not flush the pipeline.

Flags and
Modes

AMODE The AMODE bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Execute the operation ”VarC = VarA + VarB” written in
; C2xLP syntax:

 LPADDR ; Full C2xLP address compatible mode
 .lp_amode ; Tell assembler we are in C2xLP mode
 LDP #VarA ; Initialize DP (low 64K only)
 LACL VarA ; ACC = VarA (ACC high = 0)
 ADDS VarB ; ACC = ACC + VarB (unsigned)
 SACL VarC ; Store result into VarC
 C28ADDR ; Return to C28x address mode
 .c28_amode ; Tell assembler we are in C28x mode

C28MAP

6-65

C28MAP Set the M0M1MAP Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

C28MAP 0101 0110 0001 1010 X − 5
Note: This instruction is an alias for the �SETC M0M1MAP� instruction.

Operands None

Description Set the M0M1MAP status bit in Status register ST1, configuring the
mapping of the M0 and M1 memory blocks for C28x operation. The
memory blocks are mapped as follows:

M0 M0

M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

00 0400

00 07FF

C27x Compatible Mapping
(M0M1MAP = 0)

M1 M0

M1

Program Space Data Space
00 0000

00 0400

00 07FF

M0M1

Note: The pipeline is flushed when this instruction is executed.

Flags and
Modes

M0M1MAP The M0M1MAP bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x mode:
Reset:
 C28OBJ ; Enable C28x Object Mode
 C28ADDR ; Enable C28x Address Mode
 .c28_amode ; Tell assembler we are in C28x address mode
 C28MAP ; Enable C28x Mapping Of M0 and M1 blocks
 .
 .

C28OBJ

 6-66

C28OBJ Set the OBJMODE Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

C28OBJ 0101 0110 0001 1111 X − 5
Note: This instruction is an alias for the �SETC OBJMODE� instruction.

Operands None

Description Set the OBJMODE status bit, putting the device in C28x object mode
(supports C2xLP source):

Flags and
Modes

OBJ-
MODE

Set the OBJMODE bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x:
Reset:
 C28OBJ ; Enable C28x Object Mode
 C28ADDR ; Enable C27x/C28x Address Mode
 .c28_amode ; Tell assembler we are in C27x/C28x address mode
 C28MAP ; Enable C28x Mapping Of M0 and M1 blocks
 .
 .

CLRC AMODE

6-67

CLRC AMODE Clear the AMODE Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC AMODE 0101 0110 0001 0110 X − 1

Operands AMODE Status bit

Description Clear the AMODE status bit in Status Register ST1, enabling C27x/C28x
addressing (see Chapter 5).

Note: This instruction does not flush the pipeline.

Flags and
Modes

AMODE The AMODE bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Execute the operation ”VarC = VarA + VarB” written in C2xLP
; syntax:
 SETC AMODE ; Full C2xLP address-compatible mode
 .lp_amode ; Tell assembler we are in C2xLP mode
 LDP #VarA ; Initialize DP (low 64K only)
 LACL VarA ; ACC = VarA (ACC high = 0)
 ADDS VarB ; ACC = ACC + VarB (unsigned)
 SACL VarC ; Store result into VarC
 CLRC AMODE ; Return to C28x address mode
 .c28_amode ; Tell assembler we are in C28x mode

CLRC M0M1MAP

 6-68

CLRC M0M1MAP Clear the M0M1MAP Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC M0M1MAP 0101 0110 0011 1111 X − 5

Operands M0M1MAP Status bit

Description Clear the M0M1MAP status bit in Status Register ST1, configuring the
mapping of the M0 and M1 memory blocks for C27x operation. The
memory blocks are mapped as follows:

M0 M0

M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

00 0400

00 07FF

C27x Compatible Mapping
(M0M1MAP = 0)

M1 M0

M1

Program Space Data Space
00 0000

00 0400

00 07FF

M0M1

Note: The pipeline is flushed when this instruction is executed. This bit is provided for compatibility for users migrating from
C27x. The M0M1MAP bit should always remain set to 1 for users operating in C28x mode and C2xLP
source-compatible mode.

Flags and
Modes

M0M1MAP The M0M1MAP bit is cleared.

Example ; Set the device mode from reset to C27x object-compatible mode:

Reset:
 CLRC OBJMODE ; Enable C27x Object Mode
 CLRC AMODE ; Enable C27x/C28x Address Mode
 .c28_amode ; Tell assembler we are in C27x/C28x addr mode
 CLRC M0M1MAP ; Enable C27x Mapping Of M0 and M1 blocks
 .
 .

CLRC OBJMODE

6-69

CLRC OBJMODE Clear the OBJMODE Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC OBJMODE 0101 0110 0011 0110 X − 5

Operands OBJ-
MODE

Status bit

Description Clear the OBJMODE status bit, enabling the device to execute C27x object
code.

Note: The pipeline is flushed when this instruction is executed.

Flags and
Modes

OBJ-
MODE

The OBJMODE bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x object-compatible mode:

Reset:
 CLRC OBJMODE ; Enable C27x Object Mode
 CLRC AMODE ; Enable C27x/C28x Address Mode
 .c28_amode ; Tell assembler we are in C27x/C28x addr mode
 CLRC M0M1MAP ; Enable C27x Mapping Of M0 and M1 blocks
 .
 .

CLRC OVC

 6-70

CLRC OVC Clear Overflow Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC OVC 0101 0110 0101 1100 1 − 1
Note: This instruction is an alias for the �ZAP OVC� operation.

Operands OVC Overflow counter bits in Status Register 0 (ST0)

Description Clear the overflow counter (OVC) bits in ST0.

Flags and
Modes

OVC The 6-bit overflow counter bits (OVC) are cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: VarD = sat(VarA + VarB + VarC)

CLRC OVC ; Zero overflow counter
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
ADDL ACC,@VarC ; ACC = ACC + VarC
SAT ACC ; Saturate if OVC != 0
MOVL @VarD,ACC ; Store saturated result into VarD

CLRC XF

6-71

CLRC XF Clear XF Status Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC XF 0101 0110 0001 1011 X − 1

Operands XF XF status bit and output signal

Description Clear the XF status bit and pull the corresponding output signal low.

Flags and
Modes

XF The XF status bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Pulse XF signal high if branch not taken:
 MOV AL,@VarA ; Load AL with contents of VarA
 SB Dest,NEQ ; ACC = VarA
 SETC XF ; Set XF bit and signal high
 CLRC XF ; Clear XF bit and signal low
 .
 .
Dest:
 .

CLRC Mode

 6-72

CLRC Mode Clear Status Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CLRC mode 0010 1001 CCCC CCCC X − 1, 2

CLRC SXM 0010 1001 0000 0001 X − 1

CLRC OVM 0010 1001 0000 0010 X − 1

CLRC TC 0010 1001 0000 0100 X − 1

CLRC C 0010 1001 0000 1000 X − 1

CLRC INTM 0010 1001 0001 0000 X − 2

CLRC DBGM 0010 1001 0010 0000 X − 2

CLRC PAGE0 0010 1001 0100 0000 X − 1

CLRC VMAP 0010 1001 1000 0000 X − 1

Description Clear the specified status bits. The �mode� operand is a mask value that
relates to the status bits in this way:

�Mode� bit Status Register Flag Cycles
0 ST0 SXM 1
1 ST0 OVM 1
2 ST0 TC 1
3 ST0 C 1
4 ST1 INTM 2
5 ST1 DBGM 2
6 ST1 PAGE0 1
7 ST1 VMAP 1

Note: The assembler will accept any number of flag names in any order.

Flags and SXM Any of the specified bits can be cleared by the instruction.g
Modes OVM

TC
C

INTM
DBGM
PAGE0
VMAP

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

CLRC Mode

6-73

Example ; Modify flag settings:
SETC INTM,DBGM ; Set INTM and DBGM bits to 1
CLRC TC,C,SXM,OVM ; Clear TC, C, SXM, OVM bits to 0
CLRC #0xFF ; Clear all bits to 0
SETC #0xFF ; Set all bits to 1
SETC C,SXM,TC,OVM ; Set TC, C, SXM, OVM bits to 1
CLRC DBGM,INTM ; Clear INTM and DBGM bits to 0

CMP AX, loc16

 6-74

CMP AX, loc16 Compare

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMP AX, loc16 0101 010A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description The content of the specified AX register (AH or AL) is compared with the 16-bit
content of the location pointed to by the �loc16� addressing mode. The result
of (AX−- [loc16]) is evaluated and the status flag bits set accordingly. The AX
register and content of the location pointed to by �loc16� are left unchanged:

Set Flags On (AX − [loc16]);

Flags
and
Modes

N If the result of the operation is negative, then N is set; otherwise it is cleared.
The CMP instruction assumes infinite precision when it determines the sign of
the result. For example, consider the subtraction 0x8000 − 0x0001. If the
precision were limited to 16 bits, the result would cause an overflow to the
positive number 0x7FFF and N would be cleared. However, because the CMP
instruction assumes infinite precision, it would set N to indicate that
0x8000 − 0x0001 actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the
operation (AX − [loc16]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch if VarA is higher then VarB:

MOV AL,@VarA ; Load AL with contents of VarA

CMPB AL,@VarB ; Set Flags On (AL − VarB)
SB Dest,HI ; Branch if VarA higher then VarB

CMP loc16,#16bit

6-75

CMP loc16,#16bitSigned Compare

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMP loc16,#16bitSigned 0001 1011 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands loc16 Addressing mode (see Chapter 5)
#16bitSigned 16-bit immediate signed constant value

Description Compare the 16-bit contents of the location pointed to by the �loc16�
addressing mode to the signed 16-bit immediate constant value. To
perform the comparison, the result of ([loc16] − #16bitSigned) is
evaluated and the status flag bits are set accordingly. The content of
�loc16� is left unchanged:

Modify flags on ([loc16] − 16bitSigned);

Smart Encoding:
If loc16 = AL or AH and #16bitSigned is an 8-bit number, then the
assembler will encode this instruction as CMPB AX, #8bit, to override
this encoding, use the CMPW AX, #16bitSigned instruction alias.

Flags and
Modes

N If the result of the operation is negative, then N is set; otherwise it is
cleared. The CMP instruction assumes infinite precision when it deter-
mines the sign of the result. For example, consider the subtraction
0x8000 − 0x0001. If the precision were limited to 16 bits, the result
would cause an overflow to the positive number 0x7FFF and N would
be cleared. However, because the CMP instruction assumes infinite
precision, it would set N to indicate that 0x8000 − 0x0001 actually re-
sults in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if
the operation ([loc16] − 16bitSigned) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is
set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only
once.

Note: The examples in this chapter assume that the device is already
operating in C28x Mode (OBJMODE = 1, AMODE = 0). To put the
device into C28x mode following a reset, you must first set the
OBJMODE bit in ST1 by executing the �C28OBJ� (or �SETC
OBJMODE�) instruction.

CMP loc16,#16bit

 6-76

Example ; Calculate:
; if(VarA > 20)
; VarA = 0;
 CMP @VarA,#20 ; Set flags on (VarA − 20)
 MOVB @VarA,#0,GT ; Zero VarA if greater then

CMP64 ACC:P

6-77

CMP64 ACC:P Compare 64-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMP64 ACC:P 0101 0110 0101 1110 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

Description The 64-bit content of the combined ACC:P registers is compared against zero
and the flags are set appropriately:

if((V = 1) & (ACC(bit 31) = 1))
 N = 0;
else
 N = 1;
if((V = 1) & (ACC(bit 31) = 0))
 N = 1;
else
 N = 0;
if(ACC:P = 0x8000 0000 0000 0000)
 Z = 1;
else
 Z = 0;
V = 0;

Note: This operation should be used as follows:

CMP64 ACC:P ; Clear V flag

perform 64-bit operation

CMP64 ACC:P ; Set Z,N flags, V=0

conditionally branch

Flags and
Modes

N The content of the ACC register is tested to determine if the 64-bit ACC:P
value is negative. The CMP64 instruction takes into account the state of the
overflow flag (V) to increase precision when determining if ACC is negative.
For example, consider the subtraction on ACC of 0x8000 0000 − 0x0000
0001. This results in an overflow to a positive number (0x7FFF FFFF) and V
would be set. Because the CMP64 instruction takes into account the
overflow, it would interpret the result as a negative number and not a positive
number. If the value is ACC is found to be negative, then N is set; otherwise N
is cleared.

Z The zero flag bit is set if the combined 64 bits of ACC:P is zero, otherwise it is
cleared.

V The state of the V flag is used along with bit 31 of the ACC register to determine
if the value in the ACC:P register is negative. V is cleared by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

CMP64 ACC:P

 6-78

Example ; If 64-bit VarA > 64-bit VarB, branch:

CMP64 ACC:P ; Clear V flag

MOVL P,@VarA+0 ; Load P with low 32 bits of VarA

MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA

SUBUL P,@VarB+0 ; Sub from P unsigned low 32 bits of VarB

SUBBL ACC,@VarB+2 ; Sub from ACC with borrow high 32 bits of VarB

CMP64 ACC:P ; Set Z,N flags appropriately for ACC:P

SB Dest,GT ; branch if VarA > VarB

CMPB AX, #8bit

6-79

CMPB AX, #8bit Compare 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMPB AX, #8bit 0101 001A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit 8-bit immediate constant value

Description Compare the content of the specified AX register (AH or AL) with the
zero-extended 8-bit unsigned immediate constant. The result of (AX − 0:8bit)
is evaluated and the status flag bits are set accordingly. The content of the AX
register is left unchanged:

Set Flags On (AX − 0:8bit);

Flags
and
Modes

N If the result of the operation is negative, then N is set; otherwise it is cleared.
The CMPB instruction assumes infinite precision when it determines the sign
of the result. For example, consider the subtraction 0x8000 − 0x0001. If the
precision were limited to 16 bits, the result would cause an overflow to the
positive number 0x7FFF and N would be cleared. However, because the
CMPB instruction assumes infinite precision, it would set N to indicate that
0x8000 − 0x0001 actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the
operation (AX − [0:8bit]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Check if VarA is within range 0x80 <= VarA <= 0xF0:

MOV AL,@VarA ; Load AL with contents of VarA

CMPB AL,#0xF0 ; Set Flags On (AL − 0x00F0)
SB OutOfRange,GT ; Branch if VarA greater then 0x00FF
CMPB AL,#0x80 ; Set Flags On (AL − 0x0080)
SB OutOfRange,LT ; Branch if VarA less then 0x0080

CMPL ACC,loc32

 6-80

CMPL ACC,loc32 Compare 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMPL ACC,loc32 0000 1111 LLLL LLLL X − 1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description The content of the ACC register is compared with the 32-bit location pointed to
by the �loc32� addressing mode. The status flag bits are set according to the
result of (ACC − [loc32]). The ACC register and the contents of the location
pointed to by �loc32� are left unchanged:

Modify flags on (ACC − [loc32]);

Flags
and
Modes

N If the result of the operation is negative, then N is set; otherwise it is cleared.
The CMPL instruction assumes infinite precision when it determines the sign
of the result. For example, consider the subtraction 0x8000 0000 − 0x0000
0001. If the precision were limited to 32 bits, the result would cause an
overflow to the positive number 0x7FFF FFFF and N would be cleared.
However, because the CMPL instruction assumes infinite precision, it would
set N to indicate that 0x8000 0000 − 0x0000 0001 actually results in a
negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the
operation (AX − [loc32]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:

MOVL ACC,@VarB ; ACC = VarB

MOVL P,@VarA ; P = VarA

CMPL ACC,@P ; Set flags on (VarB - VarA)

MOVL @VarA,ACC,HI ; VarA = ACC if higher

MOVL @P,ACC,HI ; P = ACC if higher

MOVL @VarA,P ; VarA = P

CMPL ACC,P << PM

6-81

CMPL ACC,P << PM Compare 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMPL ACC,P << PM 1111 1111 0101 1001 X − 1

Operands ACC Accumulator register

P Product register

<<PM Product shift mode

Description The content of the ACC register is compared with the content of the P register,
shifted by the amount specified by the product shift mode (PM). The status
flag bits are set according to the result of (ACC −[P << PM]). The content of the
ACC register and the P register are left unchanged:

Modify flags on (ACC − [P << PM]);

Flags
and
Modes

N If the result of the operation is negative, then N is set; otherwise it is cleared.
The CMPL instruction assumes infinite precision when it determines the sign
of the result. For example, consider the subtraction 0x8000 0000 − 0x0000
0001. If the precision were limited to 32 bits, the result would cause an
overflow to the positive number 0x7FFF FFFF and N would be cleared.
However, because the CMPL instruction assumes infinite precision, it would
set N to indicate that 0x8000 0000 − 0x0000 0001 actually results in a
negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the
operation (AX − [P<<PM]) = 0, otherwise, it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Compare the following (VarA − VarB >> 4):

 MOVL ACC,@VarA ; ACC = VarA

 SPM −4 ; Set the product shift mode to ”>> 4”

 MOVL P,@VarB ; P = VarB

 CMPL ACC,P << PM ; Compare (VarA − VarB >> 4)

CMPR 0/1/2/3

 6-82

CMPR 0/1/2/3 Compare Auxiliary Registers

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CMPR 0 0101 0110 0001 1101 1 − 1

CMPR 1 0101 0110 0001 1001 1 − 1

CMPR 2 0101 0110 0001 1000 1 − 1

CMPR 3 0101 0110 0001 1100 1 − 1

Operands None

Description Compare AR0 to the 16-bit auxiliary register pointed to by ARP. The
comparison type is determined by the instruction.

CMPR 0: if(AR0 = AR[ARP]) TC = 1, else TC = 0
CMPR 1: if(AR0 > AR[ARP]) TC = 1, else TC = 0
CMPR 2: if(AR0 < AR[ARP]) TC = 1, else TC = 0
CMPR 3: if(AR0 != AR[ARP]) TC = 1, else TC = 0

Flags and
Modes

ARP The 3-bit ARP points to the current valid Auxiliary Register, XAR0 to XAR7.
This pointer determines which Auxiliary register is compared to AR0.

TC If the test is true, TC is set, else TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example TableA: .word 0x1111

 .word 0x2222

FuncA:

 MOVL XAR1,#VarA

 MOVZ AR0,*XAR1++

 MOVZ AR1,*XAR1

 CMPR 0

 B Equal,TC

 CMPR 2

 B Less,TC

 .

 .

; Initialize XAR1 Pointer

; Load AR0 with 0x1111, clear AR0H,

; ARP = 1

; Load AR1 with 0x2222, clear AR1H

; AR0 = AR1? No, clear TC

; Don’t branch

; AR1 > AR2? Yes, set TC

 ; Branch to “Less”

CSB ACC

6-83

CSB ACC Count Sign Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

CSB ACC 0101 0110 0011 0101 1 − 1

Operands ACC Accumulator register

Description Count the sign bits in the ACC register by determining the number of leading 0s
or 1s in the ACC register and storing the result, minus one, in the T register:

T = 0, 1 sign bit
T = 1, 2 sign bits
.
.
T = 31, 32 sign bits

Note: The count sign bit operation is often used in normalization operations and is particularly
useful for algorithms such as; calculating Square Root of a number, calculating the
inverse of a number, searching for the first �1� bit in a word.

Flags and
Modes

N N is set if bit 31 of ACC is 1, else N is cleared.

Z Z is set if ACC is 0, else Z is cleared.

TC The TC bit will reflect the state of the sign bit after the operation (TC=1 for
negative).

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Normalize the contents of VarA:

 MOVL ACC,@VarA ; Load ACC with contents of VarA

 CSB ACC ; Count sign bits

 LSLL ACC,T ; Logical shift left ACC by T(4:0)

 MOVL @VarA,ACC ; Store result into VarA

DEC loc16

 6-84

DEC loc16 Decrement by 1

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

DEC loc16 0000 1011 LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

Description Subtract 1 from the signed content of the location pointed to by the �loc16�
addressing mode:

Flags and
Modes

N After the operation if bit 15 of [loc16] is 1, set N; otherwise, clear N.
Modes

Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; VarA = VarA − 1;

DEC @VarA ; Decrement contents of VarA

DINT

6-85

DINT Disable Maskable Interrupts (Set INTM Bit)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

DINT 0011 1011 0001 0000 X − 2
Note: This instruction is an alias for the �SETC mode� operation with the �mode� field = INTM.

Operands None

Description Disable all maskable CPU interrupts by setting the INTM status bit. DINT has
no effect on the unmaskable reset or NMI interrupts.

Flags and
Modes

INTM The instruction sets this bit to disable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Make the operation ”VarC = VarA + VarB” atomic:

 DINT ; Disable interrupts (INTM = 1)
 MOVL ACC,@VarA ; ACC = VarA
 ADDL ACC,@VarB ; ACC = ACC + VarB
 MOVL @VarC,ACC ; Store result into VarC
 EINT ; Enable interrupts (INTM = 0)

DMAC ACC:P,loc32,*XAR7/++

 6-86

DMAC ACC:P,loc32,*XAR7/++ 16-Bit Dual Multiply and Accumulate

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

DMAC ACC:P,loc32,*XAR7 0101 0110 0100 1011
1100 0111 LLLL LLLL

1 Y N+2

DMAC ACC:P,loc32,*XAR7++ 0101 0110 0100 1011
1000 0111 LLLL LLLL

1 Y N+2

Operands ACC:P Accumulator register (ACC) and product register (P)

loc32 Addressing mode (see Chapter 5)
Note: The @ACC and @P register addressing modes cannot be used. No illegal

instruction trap will be generated if used (assembler will flag an error).

*XAR7 /++ Indirect program-memory addressing using auxiliary register XAR7,
can access full 4M x 16 program space range (0x000000 to 0x3FFFFF)

Description Dual 16-bit x 16-bit signed multiply and accumulate. The first
multiplication takes place between the upper words of the 32-bit locations
pointed to by the �loc32� and *XAR7/++ addressing modes and second
multiplication takes place with the lower words.

TempXT

16−bits

VarB_1

VarB_2

XAR7VarA_1

VarA_2

loc32

VarA_1 VarA_2 VarB_1 VarB_2

VarA_2 * VarB_2 << PM

16−bits

ACC P

VarA_1 * VarB_1 << PM

After the operation the ACC contains the result of multiplying and adding
the upper word of the addressed 32-bit operands. The P register contains
the result of multiplying and adding the lower word of the addressed 32-bit
operands.

XT = [loc32];
Temp = Prog[*XAR7 or *XAR7++];
ACC = ACC + (XT.MSW * Temp.MSW) << PM;
P = P + (XT.LSW * Temp.LSW) << PM;

Z, N, V, C flags and OVC counter are affected by the operation on ACC
only. The PM shift affects both the ACC and P operations.

On the C28x devices, memory blocks are mapped to both program and
data space (unified memory), hence the �*XAR7/++� addressing mode
can be used to access data space variables that fall within the program
space address range.

DMAC ACC:P,loc32,*XAR7/++

6-87

With some addressing mode combinations, you can get conflicting
references. In such cases, the C28x will give the �loc16/loc32� field
priority on changes to XAR7.
For example:

DMAC ACC:P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
DMAC ACC:P,*XAR7++,*XAR7 ; *XAR7++ given priority
DMAC ACC:P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry of the ACC register, C is set; otherwise C
is cleared.

V If an overflow of the ACC register occurs, V is set; otherwise V is not af-
fected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow of the ACC register, then the counter is incremented. If overflow
mode is disabled; and if the operation generates a negative overflow of
the ACC register, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum pos-
itive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed. Note that OVM only affects the ACC operation.

PM The value in the PM bits sets the shift mode for the output operation from
the product register. The PM mode affects both the ACC and P register
accumulates. If the product shift value is positive (logical left shift opera-
tion), then the low bits are zero filled. If the product shift value is negative
(arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. The state of the Z, N, C and OVC flags
will reflect the final result in the ACC. The V flag will be set if an
intermediate overflow occurs in the ACC.

DMAC ACC:P,loc32,*XAR7/++

 6-88

Example ; Calculate sum of product using dual 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information (located in low 4M)
; ; Data and Coeff must be aligned to even address
; ; N must be an even number
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #(N/2)−1 ; Repeat next instruction N/2 times

||DMAC P,*XAR2++,*XAR7++ ; ACC = ACC + (X[i+1] * C[i+1]) >> 5
; P = P + (X[i] * C[i]) >> 5 i++

 ADDL ACC,@P ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

DMOV loc16

6-89

DMOV loc16 Data Move Contents of 16-bit Location

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

DMOV loc16 1010 0101 LLLL LLLL 1 Y N+1

Operands loc16 Addressing mode (see Chapter 5)
Note: For this operation, register−addressing modes cannot be used. The modes are:

@ARn, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be
generated.

Description Copy the contents pointed to by �loc16� into the next highest address:

[loc16 + 1] = [loc16];

Flags and
Modes

None

Repeat This instruction is repeatable. If the operation is follows a RPT instruction,
then it will be executed N+1 times.

Example ; Calculate using 16-bit multiply:
; int16 X[3];
; int16 C[3];
; Y = (X[0]*C[0] >> 2) + (X[1]*C[1] >> 2) + (X[2]*C[2] >> 2);
; X[2] = X[1];
; X[1] = X[0];
SPM −2 ; Set product shift to >> 2
MOVP T,@X+2 ; T = X[2]
MPYS P,T,@C+2 ; P = T*C[2], ACC = 0
MOVA T,@X+1 ; T = X[1], ACC = X[2]*C[2] >> 2
MPY P,T,@C+1 ; P = T*C[1]
MOVA T,@X+0 ; T = X[0], ACC = ACC + X[1]*C[1] >> 2
MPY P,T,@C+0 ; P = T*C[0]
ADDL ACC,P << PM ; ACC = ACC + X[0]*C[0] >> 2
DMOV @X+1 ; X[2] = X[1]
DMOV @X+0 ; X[1] = X[0]
MOVL @Y,ACC ; Store result into Y

EALLOW

 6-90

EALLOW Enable Write Access to Protected Space

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

EALLOW 0111 0110 0010 0010 X − 4

Operands None

Description Enable access to emulation space and other protected registers.

This instruction sets the EALLOW bit in status register ST1. When this bit is
set, the C28x CPU allows write access to the memory-mapped registers as
well as other protected registers. See the data sheet for your particular
device to determine which registers the EALLOW bit protects.

To again protect against writes to the registers, use the EDIS instruction.

EALLOW only controls write access; reads are allowed even if EALLOW
has not been executed.

On an interrupt or trap, the current state of the EALLOW bit is saved off onto
the stack within ST1 and the EALLOW bit is autocratically cleared.
Therefore, at the start of an interrupt service routine access to the protected
registers is disabled. The IRET instruction will restore the current state of
the EALLOW bit saved on the stack.

The EALLOW bit is overridden via the JTAG port, allowing full control of
register accesses during debug from Code Composer Studio.

Flags and
Modes

EALLOW The EALLOW flag is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Enable access to RegA and RegB which are EALLOW protected:

 EALLOW ; Enable access to selected registers
 AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
 MOV @RegB,#0 ; RegB = 0
 EDIS ; Disable access to selected registers

EDIS

6-91

EDIS Disable Write Access to Protected Registers

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

EDIS 0111 0110 0001 1010 X − 4

Operands None

Description Disable access to emulation space and other protected registers.

This instruction clears the EALLOW bit in status register ST1. When this bit
is clear, the C28x CPU does not allow write access to the memory−mapped
emulation registers and other protected registers. See the data sheet for
your particular device to determine which registers the EALLOW bit
protects.

To allow write access to the registers, use the EALLOW instruction.

Flags and
Modes

EALLOW The EALLOW flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Enable access to RegA and RegB which are EALLOW protected:
 EALLOW ; Enable access to selected registers
 NOP ; Wait 2 cycles for enable to take

; effect. The number of cycles is device
; and/or register dependant.

 NOP
 AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
 MOV @RegB,#0 ; RegB = 0
 EDIS ; Disable access to selected registers

EINT

 6-92

EINT Enable Maskable Interrupts (Clear INTM Bit)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

EINT 0010 1001 0001 0000 X − 2
Note: This instruction is an alias for the �CLRC mode� operation with the �mode� field = INTM.

Operands None

Description Enable interrupts by clearing the INTM status bit.

Flags and
Modes

INTM This bit is cleared by the instruction to enable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Make the operation ”VarC = VarA + VarB” atomic:

 DINT ; Disable interrupts (INTM = 1)
 MOVL ACC,@VarA ; ACC = VarA
 ADDL ACC,@VarB ; ACC = ACC + VarB
 MOVL @VarC,ACC ; Store result into VarC
 EINT ; Enable interrupts (INTM = 0)

ESTOP0

6-93

ESTOP0 Emulation Stop 0

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ESTOP0 0111 0110 0010 0101 X − 1

Operands None

Description Emulation Stop 0

This instruction is available for emulation purposes. It is used to create a
software breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this
instruction causes the C28x to halt, regardless of the state of the DBGM bit in
status register ST1. In addition, ESTOP0 does not increment the PC.

When an emulator is not connected or when a debug program has disabled
emulation, the ESTOP0 instruction is treated the same way as a NOP
instruction. It simply advances the PC to the next instruction.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

ESTOP1

 6-94

ESTOP1 Emulation Stop 1

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ESTOP1 0111 0110 0010 0100 X − 1

Operands None

Description Emulation Stop 1

This instruction is available for emulation purposes. It is used to create an
embedded software breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this
instruction causes the C28x to halt, regardless of the state of the DBGM bit in
status register ST1. Before halting the processor, ESTOP1 increments the
PC so that it points to the instruction following the ESTOP1.

When an emulator is not connected or when a debug program has disabled
emulation, the ESTOP0 instruction is treated the same way as a NOP
instruction. It simply advances the PC to the next instruction.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

FFC XAR7,22bit

6-95

FFC XAR7,22bit Fast Function Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

FFC XAR7,22bit 0000 0000 11CC CCCC
CCCC CCCC CCCC CCCC

X − 4

Operands XAR7 Auxiliary register XAR7
22bit 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Fast function call. The return PC value is stored into the XAR7 register and
the 22-bit immediate destination address is loaded into the PC:

XAR7(21:0) = PC + 2;
XAR7(31:22) = 0;
PC = 22 bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Fast function call of FuncA:
 FFC XAR7,FuncA ; Call FuncA, return address in XAR7
 .
 .

FuncA: ; Function A:
 .
 .
 LB *XAR7 ; Return: branch to address in XAR7

FLIP AX

 6-96

FLIP AX Flip Order of Bits in AX Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

FLIP AX 0101 0110 0111 000A 1 − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

Description Bit reverse the contents of the specified AX register (AH or AL):

temp = AX;
AX(bit 0) = temp(bit 15);
AX(bit 1) = temp(bit 14);
.
.
AX(bit 14) = temp(bit 1);
AX(bit 15) = temp(bit 0);

Flags and
Modes

N After the operation, if bit 15 of AX is 1 then the negative flag bit is set; other-
wise it is cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Flip the contents of 32-bit variable VarA:

MOV AH,@VarA+0 ; Load AH with low 16 bits of VarA

MOV AL,@VarA+1 ; Load AL with high 16 bits of VarA
FLIP AL ; Flip contents of AL
FLIP AH ; Flip contents of AH
MOVL @VarA,ACC ; Store 32-bit result in VarA

IACK #16bit

6-97

IACK #16bit Interrupt Acknowledge

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IACK #16bit 0111 0110 0011 1111
CCCC CCCC CCCC CCCC

X − 1

Operands #16bit 16-bit constant immediate value (0x0000 to 0xFFFF range)

Description Acknowledge an interrupt by outputting the specified 16-bit constant on the
low 16 bits of the data bus. Certain peripherals will provide the capability to
capture this value to provide low-cost trace. See the data sheet for details for
your device.

data_bus(15:0) = 16bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

IDLE

 6-98

IDLE Put Processor in Idle Mode

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IDLE 0111 0110 0010 0001 X − 5

Operands None

Description Put the processor into idle mode and wait for enabled or nonmaskable in-
terrupt. Devices using the 28x CPU may use the IDLE instruction in com-
bination with external logic to achieve different low-power modes. See the
device-specific datasheets for more detail. The idle instruction causes the
following sequence of events:

1) The pipeline is flushed.

2) All outstanding memory cycles are completed.

3) The IDLESTAT bit of status register ST1 is set.

4) Clocks to the CPU are stopped after the entire instruction buffer is full,
placing the device in the idle state. In the idle state, CLKOUT (the
clock output from the CPU) and all clocks to blocks outside the CPU
(including the emulation block) continue to operate as long as CLKIN
(the clock input to the CPU) is driven. The PC continues to hold the
address of the IDLE instruction; the PC is not incremented before the
CPU enters the idle state.

5) The IDLE output CPU signal is activated (driven high).

6) The device waits for an enabled or nonmaskable hardware interrupt.
If such an interrupt occurs, the IDLESTAT bit is cleared, the PC is
incremented by 1, and the device exits the idle state.

If the interrupt is maskable, it must be enabled in the interrupt enable regis-
ter (IER). However, the device exits the idle state regardless of the value
of the interrupt global mask bit (INTM) of status register ST1.

After the device exits the idle mode, the CPU must respond to the interrupt
request. If the interrupt can be disabled by the INTM bit in status register
ST1, the next event depends on INTM:

� If (INTM = 0), then the interrupt is enabled, and the CPU executes the
corresponding interrupt service routine. On return from the interrupt,
execution begins at the instruction following the IDLE instruction.

� If (INTM = 1), then the interrupt is blocked and program execution
continues at the instruction immediately following the IDLE.

If the interrupt cannot be disabled by INTM, the CPU executes the corre-
sponding interrupt service routine. On return from the interrupt, execution
begins at the instruction following the IDLE.

IDLE

6-99

Flags and
Modes

IDLESTAT Before entering the idle mode, IDLESTAT is set; after exiting the idle mode
IDLESTAT is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruc-
tion, it resets the repeat counter (RPTC) and executes only once.

IMACL P,loc32,*XAR7/++

 6-100

IMACL P,loc32,*XAR7/++ Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMACL P,loc32,*XAR7 0101 0110 0100 1101
1100 0111 LLLL LLLL

1 Y N+2

IMACL P,loc32,*XAR7++ 0101 0110 0100 1101
1000 0111 LLLL LLLL

1 Y N+2

Operands P Product register
loc32 Addressing mode (see Chapter 5)

Note: The @ACC addressing mode cannot be used when the instruction is repeated. No
illegal instruction trap will be generated if used (assembler will flag an error).

*XAR7/++ Indirect program-memory addressing using auxiliary register XAR7,
can access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description 32-bit x 32-bit signed multiply and accumulate. First, add the unsigned
previous product (stored in the P register), ignoring the product shift mode
(PM), to the ACC register. Then, multiply the signed 32-bit content of the
location pointed to by the �loc32� addressing mode by the signed 32-bit
content of the program-memory location pointed to by the XAR7 register.
The product shift mode (PM) then determines which part of the lower 38
bits of the 64-bit result are stored in the P register. If specified,
post-increment the XAR7 register by 1:

ACC = ACC + unsigned P;
temp(37:0) = lower_38 bits(signed [loc32]
 * signed Prog[*XAR7 or XAR7++]);
if(PM = +4 shift)
 P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
 P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
 P(31:0) = temp(31:0);
if(PM = −1 shift)
 P(31:0) = temp(32:1);
if(PM = −2 shift)
 P(31:0) = temp(33:2);
if(PM = −3 shift)
 P(31:0) = temp(34:3);
if(PM = −4 shift)
 P(31:0) = temp(35:4);
if(PM = −5 shift)
 P(31:0) = temp(36:5);
if(PM = −6 shift)
 P(31:0) = temp(37:6);

IMACL P,loc32,*XAR7/++

6-101

On the C28x devices, memory blocks are mapped to both program and
data space (unified memory), hence the �*XAR7/++� addressing mode
can be used to access data space variables that fall within the program
space address range. With some addressing mode combinations, you can
get conflicting references. In such cases, the C28x will give the
�loc16/loc32� field priority on changes to XAR7.
For example:

IMACL P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
IMACL P,*XAR7++,*XAR7 ; *XAR7++ given priority
IMACL P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation gener-
ates an unsigned carry. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion
of the lower 38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. The state of the Z, N, C and OVC flags
will reflect the final result in the ACC. The V flag will be set if an intermedi-
ate overflow occurs in the ACC.

IMACL P,loc32,*XAR7/++

 6-102

Example ; Calculate sum of product using 32-bit multiply and retain
; 64-bit result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in

 // low 4M)
; int64 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

; Calculate low 32 bits:

 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVCU

 RPT #(N−1) ; Repeat next instruction N times

||IMACL P,*XAR2++,*XAR7++ ; OVCU:ACC = OVCU:ACC + P,
; P = (X[i] * C[i]) << 5,
; i++

 ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P

 MOVL @sum+0,ACC ; Store low 32 bits result into sum

; Calculate high 32 bits:

 MOVU @AL,OVC ; ACC = OVCU (carry count)

 MOVB AH,#0

 MPYB P,T,#0 ; P = 0

 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = (X[i] * C[i]) >> 32,
; i++

 ADDL ACC,P << PM ; ACC = ACC + P >> 5

 MOVL @sum+2,ACC ; Store high 32 bits result into sum

IMPYAL P,XT,loc32

6-103

IMPYAL P,XT,loc32 Signed 32-Bit Multiply (Lower Half) and Add Previous P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMPYAL P,XT,loc32 0101 0110 0100 1100
0000 0000 LLLL LLLL

1 − 1

Operands P Product register

XT Multiplicand register

loc32 Addressing mode (see Chapter 5)

Description Add the unsigned content of the P register, ignoring the product shift mode
(PM), to the ACC register. Multiply the signed 32-bit content of the XT
register by the signed 32-bit content of the location pointed to by the �loc32�
addressing mode. The product shift mode (PM) then determines which part
of the lower 38 bits of the 64-bit result are stored in the P register:

ACC = ACC + unsigned P;
temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)
 P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
 P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
 P(31:0) = temp(31:0);
if(PM = −1 shift)
 P(31:0) = temp(32:1);
if(PM = −2 shift)
 P(31:0) = temp(33:2);
if(PM = −3 shift)
 P(31:0) = temp(34:3);
if(PM = −4 shift)
 P(31:0) = temp(35:4);
if(PM = −5 shift)
 P(31:0) = temp(36:5);
if(PM = −6 shift)
 P(31:0) = temp(37:6);

Flags and Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.g
Modes N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates
an unsigned carry. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion of
the lower 38 bits of the 64-bit results are stored in the P register.

IMPYAL P,XT,loc32

 6-104

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y64 = (X0*C0 + X1*C1 + X2*C2) >> 2

SPM −2 ; Set product shift mode to “>> 2”
ZAPA ; Zero ACC, P, OVCU
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@C0 ; P = low 32 bits of (X0*C0 << 2)
MOVL XT,@X1 ; XT = X1
IMPYAL P,XT,@C1 ; OVCU:ACC = OVCU:ACC + P,

; P = low 32 bits of (X1*C1 << 2)

MOVL XT,@X2 ; XT = X2
IMPYAL P,XT,@C2 ; OVCU:ACC = OVCU:ACC + P,

; P = low 32 bits of (X2*C2 << 2)

ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P
MOVL @Y64+0,ACC ; Store low 32-bit result into Y64
MOVU @AL,OVC ; ACC = OVCU (carry count)
MOVB AH,#0
QMPYL P,XT,@C2 ; P = high 32 bits of (X2*C2)
MOVL XT,@X1 ; XT = X1
QMPYAL P,XT,@C1 ; ACC = ACC + P >> 2,

; P = high 32 bits of (X1*C1)

MOVL XT,@X0 ; XT = X0
QMPYAL P,XT,@C0 ; ACC = ACC + P >> 2,

; P = high 32 bits of (X0*C0)

ADDL ACC,P << PM ; ACC = ACC + P >> 2
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

IMPYL ACC,XT,loc32

6-105

IMPYL ACC,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMPYL ACC,XT,loc32 0101 0110 0100 0100
0000 0000 LLLL LLLL

1 − 2

Operands ACC Accumulator register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the �loc32� addressing mode and store
the lower 32 bits of the 64-bit result in the ACC register:

ACC = signed XT * signed [loc32];

Flags and Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.g
Modes N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate result: Y32 = M32*X32 + B32
MOVL XT,@M32 ; XT = M32
IMPYL ACC,XT,@X32 ; ACC = low 32 bits of (M32*X32)
ADDL ACC,@B32 ; ACC = ACC + B32
MOVL @Y32,ACC ; Store result into Y32

IMPYL P,XT,loc32

 6-106

IMPYL P,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMPYL P,XT,loc32 0101 0110 0000 0101
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the �loc32� addressing mode. The
product shift mode (PM) then determines which part of the lower 38 bits of
the 64-bit result gets stored in the P register as shown in the diagram below:

temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)
 P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
 P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
 P(31:0) = temp(31:0);
if(PM = −1 shift)
 P(31:0) = temp(32:1);
if(PM = −2 shift)
 P(31:0) = temp(33:2);
if(PM = −3 shift)
 P(31:0) = temp(34:3);
if(PM = −4 shift)
 P(31:0) = temp(35:4);
if(PM = −5 shift)
 P(31:0) = temp(36:5);
if(PM = −6 shift)
P(31:0) = temp(37:6);

Flags and
Modes

PM The value in the PM bits sets the shift mode that determines which portion
of the lower 38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32 bits of (M32*X32)
QMPYL ACC,XT,@X32 ; ACC = high 32 bits of (M32*X32)
MOVL @Y64+0,P ; Store result into Y64
MOVL @Y64+2,ACC

IMPYSL P,XT,loc32

6-107

IMPYSL P,XT,loc32 Signed 32-Bit Multiply (Low Half) and Subtract P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMPYSL P,XT,loc32 0101 0110 0100 0011
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Subtract the unsigned content of the P register, ignoring the product shift
mode (PM), from the ACC register. Multiply the signed 32-bit content of the
XT register by the signed 32-bit content of the location pointed to by the
�loc32� addressing mode. The product shift mode (PM) then determines
which part of the lower 38 bits of the 64-bit result are stored in the P register:

ACC = ACC - unsigned P;
temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)
 P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
 P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
 P(31:0) = temp(31:0);
if(PM = −1 shift)
 P(31:0) = temp(32:1);
if(PM = −2 shift)
 P(31:0) = temp(33:2);
if(PM = −3 shift)
 P(31:0) = temp(34:3);
if(PM = −4 shift)
 P(31:0) = temp(35:4);
if(PM = −5 shift)
 P(31:0) = temp(36:5);
if(PM = −6 shift)
 P(31:0) = temp(37:6);

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented when the subtraction operation gener-
ates an unsigned borrow. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion of
the lower 38 bits of the 64-bit results are stored in the P register.

IMPYSL P,XT,loc32

 6-108

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y64 = (−X0*C0 − X1*C1 − X2*C2) >> 2

SPM −2 ; Set product shift mode to “>> 2”
ZAPA ; Zero ACC, P, OVCU
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@C0 ; P = low 32 bits of (X0*C0 << 2)
MOVL XT,@X1 ; XT = X1
IMPYSL P,XT,@C1 ; OVCU:ACC = OVCU:ACC − P,

; P = low 32 bits of (X1*C1 << 2)

MOVL XT,@X2 ; XT = X2
IMPYSL P,XT,@C2 ; OVCU:ACC = OVCU:ACC − P,

; P = low 32 bits of (X2*C2 << 2)

SUBUL ACC,@P ; OVCU:ACC = OVCU:ACC − P
MOVL @Y64+0,ACC ; Store low 32-bit result into Y64
MOVU @AL,OVC ; ACC = OVCU (borrow count)
MOVB AH,#0
NEG ACC ; Negate borrow
QMPYL P,XT,@C2 ; P = high 32 bits of (X2*C2)
MOVL XT,@X1 ; XT = X1
QMPYSL P,XT,@C1 ; ACC = ACC − P >> 2,|

; P = high 32 bits of (X1*C1)

MOVL XT,@X0 ; XT = X0
QMPYSL P,XT,@C0 ; ACC = ACC − P >> 2,

; P = high 32 bits of (X0*C0)

SUBL ACC,P << PM ; ACC = ACC − P >> 2
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

IMPYXUL P,XT,loc32

6-109

IMPYXUL P,XT,loc32 Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IMPYXUL P,XT,loc32 0101 0110 0110 0101
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the unsigned 32-bit
content of the location pointed to by the �loc32� addressing mode. The
product shift mode (PM) then determines which part of the lower 38 bits of
the 64-bit result are stored in the P register:

temp(37:0) = lower_38 bits(signed XT * unsigned [loc32]);
if(PM = +4 shift)
 P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
 P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
 P(31:0) = temp(31:0);
if(PM = −1 shift)
 P(31:0) = temp(32:1);
if(PM = −2 shift)
 P(31:0) = temp(33:2);
if(PM = −3 shift)
 P(31:0) = temp(34:3);
if(PM = −4 shift)
 P(31:0) = temp(35:4);
if(PM = −5 shift)
 P(31:0) = temp(36:5);
if(PM = −6 shift)
 P(31:0) = temp(37:6);

Flags and
Modes

PM The value in the PM bits sets the shift mode that determines which portion of
the lower 38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

IMPYXUL P,XT,loc32

 6-110

Example ; Calculate result: Y64 = M64*X64 + B64
; Y64 = Y1:Y0, M64 = M1:M0, X64 = X1:X0, B64 = B1:B0

MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@M0 ; P = low 32 bits of (uns M0 * uns X0)
MOVL ACC,@B0 ; ACC = B0
ADDUL ACC,@P ; ACC = ACC + P
MOVL @Y0,ACC ; Store result into Y0
QMPYUL P,XT,@M0 ; P = high 32 bits of (uns M0 * uns X0)
MOVL XT,@X1 ; XT = X1
MOVL ACC,@P ; ACC = P
IMPYXUL P,XT,@M0 ; P = low 32 bits of (uns M0 * sign X1)
MOVL XT,@M1 ; XT = M1
ADDCL ACC,@P ; ACC = ACC + P + carry
IMPYXUL P,XT,@X0 ; P = low 32 bits of (sign M1 * uns X0)
ADDUL ACC,@P ; ACC = ACC + P
ADDUL ACC,@B1 ; ACC = ACC + B1
MOVL @Y1,P ; Store result into Y1

IN loc16,*(PA)

6-111

IN loc16,*(PA) Input Data From Port

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IN loc16,*(PA) 1011 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

1 Y N+2

Operands loc16 Addressing mode (see Chapter 5)
*(PA) Immediate I/O space memory address

Description Load the location pointed to by the �loc16� addressing mode with the content
of the specified I/O location pointed to by �*(PA)�:

[loc16] = IOspace[PA];

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external
interface (XINTF), the I/O strobe signal (XIS), if available on your particular
device, is toggled during the operation. The I/O address appears on the
lower 16 XINTF address lines (XA[15:0]) and the upper address lines are
zeroed. The data is read on the lower 16 data lines (XD[15:0]).
Note: I/O space may not be implemented on all C28x devices. See the data sheet for your

particular device for details.

Flags and
Modes

N If (loc16 = @AX), then after the move AX is tested for a negative condition.
The negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The
zero flag bit is set if AX = 0, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �(PA)� I/O space address
is post-incremented by 1 during each repetition.

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)
; IORegC = 0x0000;

IORegA .set 0x0300 ; Define IORegA address

IORegB .set 0x0301 ; Define IORegB address

IORegC .set 0x0302 ; Define IORegC address

 MOV @AL,#0 ; AL = 0

 UOUT *(IORegA),@AL ; IOspace[IORegA] = AL

 MOV @AL,#0x0400 ; AL = 0x0400

 UOUT *(IORegB),@AL ; IOspace[IORegB] = AL

 OUT *(IORegC),@VarA ; IOspace[IORegC] = VarA

 IN @AL,*(IORegC) ; AL = IOspace[IORegC]

 CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)

 SB $10,NEQ ; Branch if not equal

IN loc16,*(PA)

 6-112

 MOV @AL,#0 ; AL = 0
 UOUT *(IORegC),@AL ; IOspace[IORegC] = AL
$10:

INC loc16

6-113

INC loc16 Increment by 1

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

INC loc16 0000 1010 LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

Description Add 1 to the signed content of the location pointed to by the �loc16�
addressing mode:

[loc16] = [loc16] + 1;

Flags and
Modes

N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.

Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; VarA = VarA + 1;
INC @VarA ; Increment contents of VarA

INTR

 6-114

INTR Emulate Hardware Interrupt

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

INTR INTx 0000 0000 0001 CCCC X − 8

INTR DLOGINT 0000 0000 0001 CCCC X − 8

INTR RTOSINT 0000 0000 0001 CCCC X − 8

INTR NMI 0111 0110 0001 0110 X − 8

INTR EMUINT 0111 0110 0001 1100 X − 8

Operands INTx Maskable CPU interrupt vector name, x = 1 to 14
DLO-
GINT

Maskable CPU datalogging interrupt

RTOSINT Maskable CPU real-time operating system interrupt
NMI Nonmaskable interrupt
EMUINT Maskable emulation interrupt

Description Emulate an interrupt. The INTR instruction transfers program control to
the interrupt service routine that corresponds to the vector specified by the
instruction. The INTR instruction is not affected by the INTM bit in status
register ST1. It is also not affected by enable bits in the interrupt enable
register (IER) or the debug interrupt enable register (DBGIER). Once the
INTR instruction reaches the decode 2 phase of the pipeline, hardware
interrupts cannot be serviced until the INTR instruction is finished
executing (until the interrupt service routine begins).

INTx
where x =

Interrupt
Vector

INTx
where x =

Interrupt
Vector

0 RESET 9 INT9
1 INT1 10 INT10
2 INT2 11 INT11
3 INT3 12 INT12
4 INT4 13 INT13
5 INT5 14 INT14
6 INT6
7 INT7
8 INT8

INTR

6-115

Part of the operation involves saving pairs of 16-bit CPU registers onto the
stack pointed to by the SP register. Each pair of registers is saved in a
single 32-bit operation. The register forming the low word of the pair is
saved first (to an even address); the register forming the high word of the
pair is saved next (to the following odd address). For example, the first
value saved is the concatenation of the T register and the status register
ST0 (T:ST0). ST0 is saved first, then T.
This instruction should not be used with vectors 1−12 when the peripheral
interrupt expansion (PIE) block is enabled.

if(not the NMI vector)
Clear the corresponding IFR bit;
Flush the pipeline;
temp = PC + 1;
Fetch specified vector;
SP = SP + 1;
[SP] = T:ST0;
SP = SP + 2;
[SP] = AH:AL;
SP = SP + 2;
[SP] = PH:PL;
SP = SP + 2;
[SP] = AR1:AR0;
SP = SP + 2;
[SP] = DP:ST1;
SP = SP + 2;
[SP] = DBGSTAT:IER;
SP = SP + 2;
[SP] = temp;
Clear corresponding IER bit;
INTM = 0; // disable INT1−INT14, DLOGINT, RTOSINT
DBGM = 1; // disable debug events
EALLOW = 0; // disable access to emulation registers
LOOP = 0; // clear loop flag
IDLESTAT = 0; //clear idle flag
PC = fetched vector;

Flags and DBGM Debug events are disabled by setting the DBGM bit.g
Modes INTM Setting the INTM bit disables maskable interrupts.

EALLOW EALLOW is cleared to disable access to protected registers.

LOOP The loop flag is cleared.

IDLE-
STAT

The idle flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

IRET

 6-116

IRET Interrupt Return

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

IRET 0111 0110 0000 0010 X − 8

Operands None

Description Return from an interrupt. The IRET instruction restores the PC value and
other register values that were automatically saved by an interrupt
operation. The order in which the values are restored is opposite to the order
in which they were saved. All values are popped from the stack using 32-bit
operations. The stack pointer is not forced to align to an even address during
the register restore operations:

SP = SP – 2;
PC = [SP];
SP = SP – 2;

DBGSTAT:IER = [SP];
SP = SP − 2;
DP:ST1 = [SP];

SP = SP – 2;
AR1:AR0 = [SP];

SP = SP – 2;
PH:PL = [SP];
SP = SP – 2;
AH:AL = [SP];
SP = SP – 2;
T:ST0 = [SP];
SP = SP – 1;

Note: Interrupts cannot be serviced until the IRET instruction completes execution.

Flags and SXM The operation restores the state of all flags and modes of the ST0 register.g
Modes OVM

TC
C
Z
N
V
PM
OVC
INTM The operation restores the state of the specified flags and modes of the ST1

register. The following bits are not affected: LOOP, IDLESTAT, M0M1MAP

IRET

6-117

DBGM
PAGEO
VMAP
SPA
EAL-
LOW
AMODE
OBJ-
MODE
XF
ARP

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

IRET

 6-118

Example ; Full interrupt context Save and Restore:

; Vector table:
INTx: .long INTxService ; INTx interrupt vector
 .
 .
 .
; Interrupt context save:
INTxService: ; ACC, P, T, ST0, ST1, DP, AR0,

; AR1, IER, DPGSTAT registers saved
; on stack.
; Return PC saved on stack.
; IER bit corresponding to INTx
; is disabled.
; ST1(EALLOW bit = 0).
; ST1(LOOP bit = 0).
; ST1(DBGM bit = 1).
; ST1(INTM bit = 1).

 PUSH AR1H:AR0H ; Save remaining registers.
 PUSH XAR2
 PUSH XAR3
 PUSH XAR4
 PUSH XAR5
 PUSH XAR6
 PUSH XAR7
 PUSH XT
; Interrupt user code:
 .
 .
 .
; Interrupt context restore:
 POP XT ; Restore registers.
 POP XAR7
 POP XAR6
 POP XAR5
 POP XAR4
 POP XAR3
 POP XAR2
 POP AR1H:AR0H
 IRET ; Return from interrupt.

LB *XAR7

6-119

LB *XAR7 Long Indirect Branch

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LB *XAR7 0111 0110 0010 0000 X − 4

Operands *XAR7 indirect program-memory addressing using auxiliary register XAR7, can ac-
cess full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Long branch indirect. Load the PC with the lower 22 bits of the XAR7 register:

PC = XAR7(21:0);

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch value:
SwitchTable: ; Switch address table:
 .long Switch0 ; Switch0 address
 .long Switch1 ; Switch1 address
 .
 .

 MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
 MOVZ AR0,@Switch ; AR0 = Switch index
 MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
 LB *XAR7 ; Indirect branch using XAR7
SwitchReturn:
 .
 .

Switch0: ; Function A:
 .
 .
 LB SwitchReturn ; Return: long branch

Switch1: ; Function B:
 .
 .
 LB SwitchReturn ; Return: long branch

LB 22bit

 6-120

LB 22bit Long Branch

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LB 22bit 0000 0000 01CC CCCC
CCCC CCCC CCCC CCCC

X − 4

Operands 22bit 22-bit program-address (0x000000 to 0x3FFFFF range)

Description Long branch. Load the PC with the selected 22-bit program address:

PC = 22bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch
; value:

SwitchTable: ; Switch address table:
 .long Switch0 ; Switch0 address
 .long Switch1 ; Switch1 address
 .
 .

 MOVL XAR2,#Switch-
Table

; XAR2 = pointer to SwitchTable

 MOVZ AR0,@Switch ; AR0 = Switch index
 MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
 LB *XAR7 ; Indirect branch using XAR7
SwitchReturn:
 .
 .

Switch0: ; Function A:
 .
 .
 LB SwitchReturn ; Return: long branch

Switch1: ; Function B:
 .
 .
 LB SwitchReturn ; Return: long branch

LC *XAR7

6-121

LC *XAR7 Long Indirect Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LC *XAR7 0111 0110 0000 0100 X − 4

Operands *XAR7 indirect program-memory addressing using auxiliary register XAR7, can ac-
cess full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Indirect long call. The return PC value is pushed onto the software stack,
pointed to by SP register, in two 16-bit operations. Next, the destination
address stored in the XAR7 register is loaded into the PC:
temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
[SP] = temp(21:16);
SP = SP + 1;
PC = XAR7(21:0);
Note: For more efficient function calls when operating with OBJMODE = 1, use the LCR and

LRETR instructions instead of the LC and LRET instructions.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Call to subroutines in SwitchTable selected by Switch value:

SwitchTable: ; Switch address table:
 .long Switch0 ; Switch0 address
 .long Switch1 ; Switch1 address
 .
 .
 MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
 MOVZ AR0,@Switch ; AR0 = Switch index
 MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
 LC *XAR7 ; Indirect call using XAR7
 .
 .
Switch0: ; Subroutine 0:
 .
 .
 LRET ; Return

Switch1: ; Subroutine 1:
 .
 .
 LRET ; Return

LC 22bit

 6-122

LC 22bit Long Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LC 22bit 0000 0000 10CC CCCC

CCCC CCCC CCCC CCCC

X − 4

Operands 22bit 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Long function call. The return PC value is pushed onto the software stack,
pointed to by SP register, in two 16-bit operations. Next, the immediate 22-bit
destination address is loaded onto the PC:

temp(21:0) = PC + 2;
[SP] = temp(15:0);
SP = SP + 1;
[SP] = temp(21:16)
SP = SP + 1;
PC = 22bit;

Note: For more efficient function calls when operating with OBJMODE = 1, use the LCR and
LRETR instructions instead of the LC and LRET instructions.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA:

 LC FuncA ; Call FuncA, return address on stack
 .
 .

FuncA: ; Function A:
 .
 .
 LRET ; Return from address on stack

LCR #22bit

6-123

LCR #22bit Long Call Using RPC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LCR #22bit 0111 0110 01CC CCCC
CCCC CCCC CCCC CCCC

1 − 4

Operands 22bit 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Long call using return PC pointer (RPC). The current RPC value is pushed
onto the software stack, pointed to by SP register, in two 16-bit operations.
Next, the RPC register is loaded with the return address. Next, the 22-bit
immediate destination address is loaded into the PC:

[SP] = RPC(15:0);
SP = SP + 1;
[SP] = RPC(21:16);
SP = SP + 1;
RPC = PC + 2;
PC = 22bit;

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The standard
LC and LRET operations only enable a 4 cycle call and 8 cycle return. The LCR and
LRETR operations can be nested and can freely replace the LC and LRET operations.
This is the case on interrupts also. Only on a task switch operation, does the RPC need
to be manually saved and restored.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; RPC call of FuncA:
 LCR FuncA ; Call FuncA, return address in RPC
 .
 .

FuncA: ; Function A:
 .
 .
 LRETR ; RPC return

LCR *XARn

 6-124

LCR *XARn Long Indirect Call Using RPC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LCR *XARn 0011 1110 0110 0RRR 1 − 4

Operands *XARn indirect program-memory addressing using auxiliary register XAR0 to
XAR7, can access full 4Mx16 program space range (0x000000 to
0x3FFFFF)

Description Long indirect call using return PC pointer (RPC). The current RPC value is
pushed onto the software stack, pointed to by SP register, in two 16-bit
operations. Next, the RPC register is loaded with the return address. Next,
the destination address stored in the XARn register is loaded into the PC:
[SP] = RPC(15:0);
SP = SP + 1;
[SP] = RPC(21:16);
SP = SP + 1;
RPC = PC + 1;
PC = XARn(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The standard
LC and LRET operations only enable a 4 cycle call and 8 cycle return. The LCR and
LRETR operations can be nested and can freely replace the LC and LRET operations.
This is the case on interrupts also. Only on a task switch operation, does the RPC need
to be manually saved and restored.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Call to subroutines in SwitchTable selected by Switch value:

SwitchTable: ; Switch address table:

.long Switch0 ; Switch0 address

.long Switch1 ; Switch1 address

.

MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable

MOVZ AR0,@Switch ; AR0 = Switch index

MOVL XAR6,*+XAR2[AR0] ; XAR6 = SwitchTable[Switch]

LCR *XAR6 ; Indirect RPC call using XAR6

.

Switch0: ; Subroutine 0:

.

.

LRETR ; RPC Return

Switch1: ; Subroutine 1:

.

LRETR ; RPC Return

LOOPNZ loc16,#16bit

6-125

LOOPNZ loc16,#16bit Loop While Not Zero

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LOOPNZ loc16,#16bit 0010 1110 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 5N+5

Operands loc16 Addressing mode (see Chapter 5)
#16bit 16-bit immediate value (0x0000 to 0xFFFF range)

Description Loop while not zero.
while([loc16] & 16bit != 0);

The LOOPNZ instruction uses a bitwise AND operation to compare the value
referenced by the �loc16� addressing mode and the 16-bit mask value. The
instruction performs this comparison repeatedly for as long as the result of
the operation is not 0. The process can be described as follows:
1) Set the LOOP bit in status register ST1.

2) Generate the address for the value referenced by the �loc16� addressing
mode.

3) If �loc16� is an indirect-addressing operand, perform any specialized
modification to the SP or the specified auxiliary register and/or the ARPn
pointer.

4) Compare the addressed value with the mask value by using a bitwise
AND operation.

5) If the result is 0, clear the LOOP bit and increment the PC by 2. If the
result is not 0, then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware
interrupts. When an interrupt occurs, if the LOOPNZ instruction is still active,
the return address saved on the stack points to the LOOPNZ instruction.
Therefore, upon return from the interrupt the LOOPNZ instruction is fetched
again.

While the result of the AND operation is not 0, the LOOPNZ instruction
begins again every five cycles in the decode 2 phase of the pipeline. Thus the
memory location or register is read once every five cycles. If you use an
indirect addressing mode for the �loc16� operand, you can specify an
increment or decrement for the pointer (SP or auxiliary register). If you do,
the pointer is modified each time in the decode 2 phase of the pipeline. This
means that the mask value is compared with a new data-memory value each
time.
The LOOPNZ instruction does not flush prefetched instructions from the
pipeline. However, when an interrupt occurs, prefetched instructions are
flushed.

LOOPNZ loc16,#16bit

 6-126

When any interrupt occurs, the current state of the LOOP bit is saved as ST1
is saved on the stack. The LOOP bit in ST1 is then cleared by the interrupt.
The LOOP bit is a passive status bit. The LOOPNZ instruction changes
LOOP, but LOOP does not affect the instruction.
You can abort the LOOPNZ instruction within an interrupt service routine.
Test the LOOP bit saved on the stack. If it is set, then increment (by 2) the
return address on the stack. Upon return from the interrupt, this incremented
address is loaded into the PC and the instruction following the LOOPNZ is
executed.

Flags and
Modes

N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.

Z If the result of the AND operation is 0, set Z; otherwise, clear Z.

LOOP LOOP is repeatedly set while the result of the AND operation is not 0. LOOP
is cleared when the result is 0. If an interrupt occurs before the LOOPNZ in-
struction enters the decode 2 phase of the pipeline, the instruction is flushed
from the pipeline and, thus, does not affect the LOOP bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Wait until bit 3 in RegA is cleared before writing to RegB:

 LOOPNZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 != 0)
 MOV @RegB,#0x8000 ; RegB = 0x8000

LOOPZ loc16,#16bit

6-127

LOOPZ loc16,#16bit Loop While Zero

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LOOPZ loc16,#16bit 0010 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 5N+5

Operands loc16 Addressing mode (see Chapter 5)
#16bit 16-bit immediate value (0x0000 to 0xFFFF range)

Description Loop while zero.
while([loc16] & 16bit = 0);

The LOOPZ instruction uses a bitwise AND operation to compare the value
referenced by the �loc16� addressing mode and the 16-bit mask value. The
instruction performs this comparison repeatedly for as long as the result of
the operation is 0. The process can be described as follows:
1) Set the LOOP bit in status register ST1.

2) Generate the address for the value referenced by the �loc16� addressing
mode.

3) If �loc16� is an indirect-addressing operand, perform any specialized
modification to the SP or the specified auxiliary register and/or the ARPn
pointer.

4) Compare the addressed value with the mask value by using a bitwise
AND operation.

5) If the result is not 0, clear the LOOP bit and increment the PC by 2. If the
result is 0, then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware
interrupts. When an interrupt occurs, if the LOOPZ instruction is still active,
the return address saved on the stack points to the LOOPZ instruction.
Therefore, upon return from the interrupt the LOOPZ instruction is fetched
again.

While the result of the AND operation is 0, the LOOPZ instruction begins
again every five cycles in the decode 2 phase of the pipeline. Thus the
memory location or register is read once every five cycles. If you use an
indirect addressing mode for the �loc16� operand, you can specify an
increment or decrement for the pointer (SP or auxiliary register). If you do,
the pointer is modified each time in the decode 2 phase of the pipeline. This
means that the mask value is compared with a new data-memory value each
time.
The LOOPZ instruction does not flush prefetched instructions fr4om the
pipeline. However, when an interrupt occurs, prefetched instructions are
flushed.

LOOPZ loc16,#16bit

 6-128

When any interrupt occurs, the current state of the LOOP bit is saved as ST1
is saved on the stack. The LOOP bit in ST1 is then cleared by the interrupt.
The LOOP bit is a passive status bit. The LOOPZ instruction changes LOOP,
but LOOP does not affect the instruction.
You can abort the LOOPZ instruction within an interrupt service routine. Test
the LOOP bit saved on the stack. If it is set, then increment (by 2) the return
address on the stack. Upon return from the interrupt, this incremented
address is loaded into the PC and the instruction following the LOOPZ is
executed.

Flags and N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.g
Modes Z If the result of the AND operation is 0, set Z; otherwise, clear Z.

LOOP LOOP is repeatedly set while the result of the AND operation is 0. LOOP is
cleared when the result is not 0. If an interrupt occurs before the LOOPZ in-
struction enters the decode 2 phase of the pipeline, the instruction is flushed
from the pipeline and, thus, does not affect the LOOP bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Wait until bit 3 in RegA is set before writing to RegB:
 LOOPZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 = 0)
 MOV @RegB,#0x8000 ; RegB = 0x8000

LPADDR

6-129

LPADDR Set the AMODE Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LPADDR 0101 0110 0001 1110 X − 1
Note: LPADDR is an alias for the SETC AMODE Operation.

Operands None

Description Set the AMODE status bit, putting the device in C2xLP compatible
addressing mode (see Chapter 5).
Note: This instruction does not flush the pipeline.

Flags and
Modes

AMODE The AMODE bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Execute the operation ”VarC = VarA + VarB” written in C2xLP syntax:
 LPADDR ; Full C2xLP address compatible mode
 .lp_amode ; Tell assembler we are in C2XLP mode
 LDP #VarA ; Initialize DP (low 64K only)
 LACL VarA ; ACC = VarA (ACC high = 0)
 ADDS VarB ; ACC = ACC + VarB (unsigned)
 SACL VarC ; Store result into VarC
 C28ADDR ; Return to C28x address mode
 .c28_amode ; Tell assembler we are in C28x mode

LRET

 6-130

LRET Long Return

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LRET 0111 0110 0001 0100 X − 8

Operands None

Description Long return. The return address is popped, from the software stack into the
PC, in two 16-bit operations:
SP = SP – 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
PC = temp(21:0);

Flags and
Modes

None

Note: For more efficient function calls when operating with OBJMODE = 1, use the LCR and
LRETR instructions in place of the LC and LRET instructions.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA:

 LC FuncA ; Call FuncA, return address on stack
 .
 .

FuncA: ; Function A:
 .
 .
 LRET ; Return from address on stack

LRETE

6-131

LRETE Long Return and Enable Interrupts

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LRETE 0111 0110 0001 0000 X − 8

Operands None

Description Long return and enable interrupts. The return address is popped, from the
software stack into the PC, in two 16-bit operations. Next, the global interrupt
flag (INTM) is cleared. This enables global maskable interrupts:
SP = SP – 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
PC = temp(21:0);
INTM = 0;

Flags and
Modes

INTM This instruction enables interrupts by clearing the INTM bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA. Disable interrupts on entry and
; enable interrupts on exit:
 LC FuncA ; Call FuncA, return address on stack
 .
 .

FuncA: ; Function A:
 SETC INTM ; Disable interrupts
 .
 .
 LRETE ; Return from address on stack,

; Enable interrupts

LRETR

 6-132

LRETR Long Return Using RPC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LRETR 0000 0000 0000 0110 1 − 4

Operands None

Description Long return using return PC pointer (RPC). The return address stored in the
RPC register is loaded onto the PC. Next, the RPC register is loaded from the
software stack in two 16-bit operations:
PC = RPC;
SP = SP – 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
RPC = temp(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The standard
LC and LRET operations only enable a 4 cycle call and 8 cycle return. The LCR and
LRETR operations can be nested and can freely replace the LC and LRET operations.
This is the case on interrupts also. Only on a task switch operation, does the RPC need
to be manually saved and restored.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; RPC call of FuncA:

 LCR FuncA ; Call FuncA, return address in RPC
 .
 .

FuncA: ; Function A:
 .
 .
 LRETR ; RPC return

LSL ACC,#1..16

6-133

LSL ACC,#1..16 Logical Shift Left

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL ACC,#1..16 1111 1111 0011 SHFT X Y N+1

Operands ACC Accumulator register

#1..16 Shift value

Description Perform a logical shift left on the content of the ACC register by the amount
specified by the shift value. During the shift, the low order bits of the ACC
register are zero filled and the last bit shifted out is stored in the carry flag bit:

0

C

ACC

ACC

Last bit out

Discard
other bits

Left shift
(Immediate value)

Flags and
Modes

N After the shift, if bit 31 of ACC is 1 then the negative flag bit is set; otherwise it
is cleared.

Z After the shift, if ACC is 0, then the Z bit is set, otherwise it is cleared.

C The last bit to be shifted out of ACC is stored in C.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the LSL instruction will be executed N+1 times. The state of the Z, N, and C
flags will reflect the final result.

Example ; Logical shift left contents of VarA by 4:

 MOVL ACC,@VarA ; ACC = VarA

 LSL ACC,#4 ; Logical shift left ACC by 4

 MOVL @VarA,ACC ; Store result into VarA

LSL ACC,T

 6-134

LSL ACC,T Logical Shift Left by T(3:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL ACC,T 1111 1111 0101 0000 X − 1

Operands ACC Accumulator register

T Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift left on the content of the ACC register by the amount
specified by the four least significant bits of the T register, T(3:0) = 0…15.
Higher order bits are ignored. During the shift, the low order bits of the ACC
register are zero filled. If T specifies a shift of 0, then C is cleared; otherwise,
C is filled with the last bit to be shifted out of the ACC register:

0

C
ACC

ACC

Last bit out or cleared

Discard other bits

Left shift
(Contents T(3:0)

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the zero condition and Z is affected.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the negative condition and N is affected.

C If (T(3:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded
into the C flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift left contents of VarA by VarB:

 MOVL ACC,@VarA ; ACC = VarA

 MOV T,@VarB ; T = VarB (shift value)

 LSL ACC,T ; Logical shift left ACC by T(3:0)

 MOVL @VarA,ACC ; Store result into VarA

LSL AX,#1...16

6-135

LSL AX,#1...16 Logical Shift Left

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL AX,#1…16 1111 1111 100A SHFT X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#1…16 Shift value

Description Perform a logical shift left on the content of the specified AX register (AH or
AL) by the amount given �shift value� field. During the shift, the low order bits
of the AX register are zero filled and the last bit to be shifted out is stored in
the carry bit flag:

0

C

AX

AX

Discard
other bits

Last bit out

Left shift
(Immediate value)

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared.

C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Multiply index register AR0 by 2:

MOV AL,@AR0 ; Load AL with contents of AR0

LSL AL,#1 ; Scale result by 1 (*2)
MOV @AR0,AL ; Store result back in AR0

LSL AX,T

 6-136

LSL AX,T Logical Shift Left by T(3:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL AX,T 1111 1111 0110 011A X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

T Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift left on the content of the specified AX register by the
amount specified by the four least significant bits of the T register, T(3:0). The
contents of higher order bits are ignored. During the shift, the low order bits of
the AX register are zero filled. If the T(3:0) register bits specify a shift of 0,
then C is cleared; otherwise, C is filled with the last bit to be shifted out of AX:

0

C

AX

AX

Discard
other bits

Last bit out or cleared

Left shift
(Contents of T(3:0)

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared. Even if the T(3:0) register bits specify a shift of 0, the value of AH or
AL is still tested for the negative condition and N is affected.

Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the
T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested for
the zero condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the
last bit to be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate value: VarC = VarA << VarB;

MOV T,@VarB ; Load T with contents of VarB

MOV AL,@VarA ; Load AL with contents of VarA
LSL AL,T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

LSL64 ACC:P,#1..16

6-137

LSL64 ACC:P,#1..16 Logical Shift Left

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL64 ACC:P,#1..16 0101 0110 1010 SHFT 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

#1..16 Shift value

Description Logical shift left the 64-bit combined value of the ACC:P registers by the
amount specified in the shift value field. During the shift, the low order bits are
zero-filled and the last bit shifted out is stored in the carry bit flag:

0

C
ACC:P

ACC:P

Last bit out

Discard other bits

Left shift
(Immediate value)

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift left the 64-bit Var64 by 10:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

LSL64 ACC:P,#10 ; Logical shift left ACC:P by 10

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

LSL64 ACC:P,T

 6-138

LSL64 ACC:P,T 64-Bit Logical Shift Left by T(5:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSL64 ACC:P,T 0101 0110 0101 0010 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

T Upper 16 bits of the multiplicand register (XT)

Description Logical shift left the 64-bit combined value of the ACC:P registers by the
amount specified in the six least significant bits of the T register,
T(5:0) = 0…63. Higher order bits are ignored. During the shift, the low order
bits are zero-filled. If T specifies a shift of 0, then C is cleared; otherwise, C is
filled with the last bit to be shifted out of the ACC:P registers:

0

C

ACC:P

ACC:P

Last bit out or cleared

Discard
other bits

Left shift
contents of T (5:0)

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit
value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift left the 64-bit Var64 by contents of Var16:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

MOV T,@Var16 ; Load T with shift value from Var16

LSL64 ACC:P,T ; Logical shift left ACC:P by T(5:0)

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

LSLL ACC,T

6-139

LSLL ACC,T Logical Shift Left by T (4:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSLL ACC,T 0101 0110 0011 1011 1 − 1

Operands ACC Accumulator register

T Upper 16 bits of the multiplicand (XT) register

T Upper 16 bits of the multiplicand register (XT)

Description Perform a logical shift left on the content of the ACC register by the amount
specified by the five least significant bits of the T register, T(4:0) = 0…31.
Higher order bits are ignored. During the shift, the low order bits of the ACC
register are zero filled. If T specifies a shift of 0, then C is cleared; otherwise,
C is filled with the last bit to be shifted out of the ACC register:

0

C

ACC

ACC

Last bit out or cleared

Discard
other bits

Left shift
(Contents of T (4:0)

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the zero condition and Z is affected.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the negative condition and N is affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift left contents of VarA by VarB:

 MOVL ACC,@VarA ; ACC = VarA

 MOV T,@VarB ; T = VarB (shift value)

 LSLL ACC,T ; Logical shift left ACC by T(4:0)

 MOVL @VarA,ACC ; Store result into VarA

LSR AX,#1...16

 6-140

LSR AX,#1...16 Logical Shift Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSR AX,#1…16 1111 1111 110A SHFT X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#1…16 Shift value

Description Perform a logical right shift on the content of the specified AX register by the
amount given by the �shift value� field. During the shift, the high order bits of
the AX register are zero filled and the last bit to be shifted out is stored in the
carry flag bit:

0

C
AX

AX

Discard
other bits

Last bit out

Right shift
(Immediate value)

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared.

C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Divide index register AR0 by 2:

MOV AL,@AR0 ; Load AL with contents of AR0

LSR AL,#1 ; Scale result by 1 (/2)
MOV @AR0,AL ; Store result back in AR0

LSR AX,T

6-141

LSR AX,T Logical Shift Right by T(3:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSR AX,T 1111 1111 0110 001A X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift right on the content of the specified AX register (AH or
AL) as specified by the four least significant bits of the T register, T(3:0). The
contents of higher order bits are ignored. During the shift, the high order bits
of the AX register are zero filled If the T(3:0) register bits specify a shift of 0,
then C is cleared; otherwise, C is filled with the last bit to be shifted out of AX:

0

C

AX

AX

Discard
other bits

Last bit out or cleared

Right shift
Contents of T (3:0)

Flags and
Modes

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared. Even if the T(3:0) register bits specify a shift of 0, the value of AH or
AL is still tested for the negative condition and N is affected.

Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the
T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested for
the zero condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the
last bit to be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate un-signed value: VarC = VarA >> VarB;

MOV T,@VarB ; Load T with contents of VarB

MOV AL,@VarA ; Load AL with contents of VarA
LSR AL,T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

LSR64 ACC:P,#1..16

 6-142

LSR64 ACC:P,#1..16 64-Bit Logical Shift Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSR64 ACC:P,#1..16 0101 0110 1001 SHFT 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

#1..16 Shift value

Description Logical shift right the 64-bit combined value of the ACC:P registers by the
amount specified in the shift value field. As the value is shifted, the most
significant bits are zero filled and the last bit shifted out is stored in the carry
bit flag:

0

C

ACC:P

ACC:P

Right shift
(Immediate value)

Discard
other bits

Last bit out

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift right the 64-bit Var64 by 10:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

LSR64 ACC:P,#10 ; Logical shift right ACC:P by 10

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

LSR64 ACC:P,T

6-143

LSR64 ACC:P,T 64-Bit Logical Shift Right by T(5:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSR64 ACC:P,T 0101 0110 0101 1011 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

T Upper 16 bits of the multiplicand register (XT)

Description Logical shift right the 64-bit combined value of the ACC:P registers by the
amount specified by the six least significant bits of the T register,
T(5:0) = 0…63. Higher order bits are ignored. As the value is shifted, the
most significant bits are zero filled. If T specifies a shift of 0, then C is cleared;
otherwise, C is filled with the last bit to be shifted out of the ACC:P registers:

0

C

ACC:P

ACC:P

Right shift
(Contents of T(5:0)

Discard
other bits

Last bit out or cleared

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is
zero; otherwise, Z is cleared.

C If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit
value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by contents of Var16:

MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64

MOV T,@Var16 ; Load T with shift value from Var16

LSR64 ACC:P,T ; Logical shift right ACC:P by T(5:0)

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

LSRL ACC,T

 6-144

LSRL ACC,T Logical Shift Right by T (4:0)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

LSRL ACC,T 0101 0110 0010 0010 1 − 1

Operands ACC Accumulator register

T Upper 16 bits of the multiplicand (XT) register

Description Perform an logical shift right on the content of the ACC register as specified
by the five least significant bits of the T register, T(4:0) = 0…31. Higher order
bits are ignored. During the shift, the high order bits of ACC are zero-filled. If
T specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit
to be shifted out of the ACC register:

0

C
ACC

ACC

Right shift
Contents of T (4:0)

Discard
other bits

Last bit out or cleared

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the zero condition and Z is affected.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the negative condition and N is affected.

C If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded
into the C flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Logical shift right contents of VarA by VarB:

 MOVL ACC,@VarA ; ACC = VarA

 MOV T,@VarB ; T = VarB (shift value)

 LSRL ACC,T ; Logical shift right ACC by T(4:0)

 MOVL @VarA,ACC ; Store result into VarA

MAC P,loc16,0:pma

6-145

MAC P,loc16,0:pma Multiply and Accumulate

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MAC P,loc16,0:pma 0001 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

X − n+2

Operands P Product register

loc16 Addressing mode (see Chapter 5)

0:pma Immediate program memory address, access low 64K range of program
space only (0x000000 to 0x00FFFF)

Description 1) Add the previous product (stored in the P register), shifted as specified
by the product shift mode (PM), to the ACC register.

2) Load the T register with the content of the location pointed to by the
�loc16� addressing mode.

3) Multiply the signed 16-bit content of the T register by the signed 16-bit
content of the addressed program memory location and store the 32-bit
result in the P register:

ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x00:pma];

The C28x forces the upper 6 bits of the program memory address, specified
by the �0:pma� addressing mode, to 0x00 when using this form of the MAC
instruction. This limits the program memory address to the low 64K of
program address space (0x000000 to 0x00FFFF). On the C28x devices,
memory blocks are mapped to both program and data space (unified
memory), hence the �0:pma� addressing mode can be used to access data
space variables that fall within its address range.

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

MAC P,loc16,0:pma

 6-146

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs. When repeated, the program-memory address is incremented by 1
during each repetition.

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in low 64K
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
 MOVL XAR2,#X ; XAR2 = pointer to X
 SPM −5 ; Set product shift to ”>> 5”
 ZAPA ; Zero ACC, P, OVC
 RPT #N−1 ; Repeat next instruction N times
||MAC P,*XAR2++,0:C ; ACC = ACC + P >> 5,

; P = *XAR2++ * *C++

 ADDL ACC,P << PM ; Perform final accumulate
 MOVL @sum,ACC ; Store final result into sum

MAC P ,loc16,*XAR7/++

6-147

MAC P ,loc16,*XAR7/++ Multiply and Accumulate

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MAC P, loc16, *XAR7 0101 0110 0000 0111
1100 0111 LLLL LLLL

1 Y N+2

MAC P, loc16, *XAR7++ 0101 0110 0000 0111
1000 0111 LLLL LLLL

1 Y N+2

Operands P Product register

loc16 Addressing mode (see Chapter 5)

*XAR7
/++

Indirect program-memory addressing using auxiliary register XAR7, can
access full 4M x 16 program space range (0x000000 to 0x3FFFFF)

Description Use the following steps for this instruction:

1) Add the previous product (stored in the P register), shifted as specified
by the product shift mode (PM), to the ACC register.

2) Load the T register with the content of the location pointed to by the
�loc16� addressing mode.

3) Multiply the signed 16-bit content of the T register by the signed 16-bit
content of the program memory location pointed to by the XAR7 register
and store the 32-bit result in the P register. If specified, post-increment
the XAR7 register by 1:

ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[*XAR7 or *XAR7++];

On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the �XAR7/++� addressing mode can be
used to access data space variables that fall within the program space
address range.

With some addressing mode combinations, you can get conflicting
references. In such cases, the C28x will give the �loc16/loc32� field priority
on changes to XAR7. For example:

MAC P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
MAC P,*XAR7++,*XAR7 ; *XAR7++ given priority
MAC P,*XAR7,*XAR7++ ; *XAR7++ given priority

MAC P ,loc16,*XAR7/++

 6-148

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
Modes

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs.

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information (located in low 4M)
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #N−1 ; Repeat next instruction N times

||MAC P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = *XAR2++ * *XAR7++

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

MAX AX, loc16

6-149

MAX AX, loc16 Find the Maximum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MAX AX, loc16 0101 0110 0111 001A
0000 0000 LLLL LLLL

1 Y N+1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing modes (see Chapter 5)

Description Compare the signed contents of the specified AX register (AH or AL) with the
signed content of the location pointed to by the �loc16� addressing mode and
load the AX register with the larger of these two values:

if(AX < [loc16]), AX = [loc16];
if(AX >= [loc16]), AX = unchanged;

Flags and
Modes

N If AX is less then the contents of the addressed location (AX < [loc16]) then
the negative flag bit will be set; otherwise, it will be cleared.

Z If AX and the contents of the addressed location are equal (AX = [loc16]) then
the zero flag bit will be set; otherwise, it will be cleared.

V If AX is less then the contents of the addressed location (AX < [loc16]) then
the overflow flag bit will be set. This instruction cannot clear the V flag.

Repeat If the operation is follows a RPT instruction, the instruction will be executed
N+1 times. The state of the N, Z, and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; if(VarA > 2000) VarA = 2000;
; if(VarA < −2000) VarA = −2000;
MOV AL,@VarA ; Load AL with contents of VarA

MOV @AH,#2000 ; Load AH with the value 2000
MIN AL,@AH ; if(AL > AH) AL = AH
NEG AH ; AH = −2000
MAX AL,@AH ; if(AL < AH) AL = AH
MOV @VarA,AL ; Store result into VarA

MAXCUL P,loc32

 6-150

MAXCUL P,loc32 Conditionally Find the Unsigned Maximum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MAXCUL P,loc32
0101 0110 0101 0001
0000 0000 LLLL LLLL 1 − 1

Operands P Product register

loc32 Addressing mode (see Chapter 5)

Description Based on the state of the N and Z flags, conditionally compare the unsigned
contents of the P register with the 32-bit, unsigned content of the location
pointed to by the �loc32� addressing mode and load the P register with the
larger of the two numbers:

if((N=1) & (Z=0))
 P = [loc32];
if((N=0) & (Z=1) & (P < [loc32]))
 V=1, P = [loc32];
if((N=0) & (Z=0))
 P = unchanged;

Note: The �P < [loc32� operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MAXL instruction to form a
64-bit maximum function. It is assumed that the N and Z flags will first be set
by using a MAXL instruction to compare the upper 32 bits of a 64-bit value.
The MAXCUL instruction is then used to conditionally compare the lower 32
bits based on the results of the upper 32-bit comparison.

Flags and N If (N = 1 and z = 0) then load P with [loc32].g
Modes Z If (N = 0 and Z = 1) compare the unsigned content of the P with the unsigned

[loc32] and load P with the larger of the two.

If (N = 0 and Z = 0) do nothing.

V If (N = 0 AND Z = 1 AND P < [loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it
resets the repeat counter (RPTC) and executes only once.

Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64

MOVL ACC,@Var64+2
MOVL P,@Var64+0

; Load ACC:P with Var64

MINL ACC,@MaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64

MINCUL P,@MaxPos64+2
SB saturate,OV

MAXL ACC,@MaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64

MAXCUL P,@MaxNeg64+0

MAXCUL P,loc32

6-151

Saturate:
MOVL @Var64+2,ACC ; Store result into Var64

MOVL @Var64,P

MAXL ACC,loc32

 6-152

MAXL ACC,loc32 Find the 32-bit Maximum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MAXL ACC,loc32
0101 0110 0110 0001
0000 0000 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Compare the content of the ACC register with the location pointed to by the
�loc32� addressing mode and load the ACC register with the larger of these
two values:

if(ACC < [loc32]), ACC = [loc32];
if(ACC >= [loc32]), ACC = unchanged;

Flags and
Modes

Z If ACC is equal to the contents of the addressed location (ACC = [loc32]), set
Z; otherwise, clear Z.

N If ACC is less then the contents of the addressed location, (ACC < [loc32]),
set N; otherwise clear N. The MAXL instruction assumes infinite precision
when it determines the sign of the result. For example, consider the
subtraction 0x8000 0000 − 0x0000 0001. If the precision were limited to 32
bits, the result would cause an overflow to the positive number 0x7FFF FFFF
and N would be cleared. However, because the MAXL instruction assumes
infinite precision, it would set N to indicate that 0x8000 0000 − 0x0000 0001
actually results in a negative number.

C If (ACC − [loc32]) generates a borrow, clear the C bit; otherwise set C.

V If ACC is less then the contents of the addressed location (ACC < [loc32]),
set V. This instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the MAXL instruction will be executed N+1 times. The state of the Z, N, and C
flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs.

Example ; Saturate VarA as follows:
; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
 MOVL ACC,@VarA ; ACC = VarA

 MINL ACC,@MaxPos ; if(ACC > MaxPos) ACC = MaxPos

 MAXL ACC,@MaxNeg ; if(ACC < MaxNeg) ACC = MaxNeg

 MOVL @VarA,ACC ; Store result into VarA

MIN AX, loc16

6-153

MIN AX, loc16 Find the Minimum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MIN AX, loc16 0101 0110 0111 010A
0000 0000 LLLL LLLL

1 Y N+1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing modes (see Chapter 5)

Description Compare the signed content of the specified AX register (AH or AL) with the
content of the signed location pointed to by the �loc16� addressing mode and
load the AX register with the smaller of these two values:

if(AX > [loc16]), AX = [loc16];
if(AX <= [loc16]), AX = unchanged;

Flags and
Modes

N If AX is less then the contents of the addressed location (AX < [loc16]) then
the negative flag bit will be set; otherwise, it will be cleared.

Z If AX and the contents of the addressed location are equal (AX = [loc16]) then
the zero flag bit will be set; otherwise, it will be cleared.

V If AX is greater then the contents of the addressed location (AX > [loc16])
then the overflow flag bit will be set. This instruction cannot clear the V flag.

Repeat If the operation is follows a RPT instruction, the instruction will be executed
N+1 times. The state of the N, Z and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; if(VarA > 2000) VarA = 2000;
; if(VarA < −2000) VarA = −2000;
MOV AL,@VarA ; Load AL with contents of VarA

MOV @AH,#2000 ; Load AH with the value 2000
MIN AL,@AH ; if(AL > AH) AL = AH
NEG AH ; AH = −2000
MAX AL,@AH ; if(AL < AH) AL = AH
MOV @VarA,AL ; Store result into VarA

MINCUL P,loc32

 6-154

MINCUL P,loc32 Conditionally Find the Unsigned Minimum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MINCUL P,loc32
0101 0110 0101 1001
xxxx xxxx LLLL LLLL 1 − 1

Operands P Product register

loc32 Addressing mode (see Chapter 5)

Description Based on the state of the N and Z flags, conditionally compare the unsigned
contents of the P register with the 32-bit, unsigned content of the location
pointed to by the �loc32� addressing mode and load the P register with the
smaller of the two numbers:

if((N = 0) & (Z = 0))
 P = [loc32];
if((N = 0) & (Z = 1) & (P > [loc32]))
 V=1, P = [loc32];
if((N = 1) & (Z = 0))
 P = unchanged;

Note: The �p < [loc32]� operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MINL instruction to form a
64-bit minimum function. It is assumed that the N and Z flags will first be set
by using a MINL instruction to compare the upper 32 bits of a 64-bit value.
The MINCUL instruction is then used to conditionally compare the lower 32
bits based on the results of the upper 32-bit comparison.

Flags and
Modes

N
Z

If (N = 1 AND Z = 0), then load the P register with [loc32].
If (N = 0 AND Z =1), compare unsigned and load P with the smaller P register
to [loc32].
If (N = 0 AND Z = 0), do nothing.

V If (N = 0 AND Z = 1 AND P < [loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64
MOVL ACC,@Var64+2 ; Load ACC:P with Var64

MOVL P,@Var64+0

MINL ACC,@MaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64

MINCUL P,@MaxPos64+0

MAXL ACC,@MaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64

MAXCUL P,@MaxNeg64+0

MOVL @Var64+2,ACC ; Store result into Var64

MOVL @Var64+0,P

MINL ACC,loc32

6-155

MINL ACC,loc32 Find the 32-bit Minimum

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MINL ACC,loc32
0101 0110 0101 0000
0000 0000 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Compare the content of the ACC register with the location pointed to by the
�loc32� addressing mode and load the ACC register with the larger of these
two values:

if(ACC <= [loc32]), ACC = unchanged;
if(ACC > [loc32]), ACC = [loc32];

Flags and
Modes

Z If ACC is equal to the contents of the addressed location (ACC = [loc32]), set
Z; otherwise clear Z.

N If ACC is less then the contents of the addressed location, (ACC < [loc32]),
set N; otherwise clear N. The MINL instruction assumes infinite precision
when it determines the sign of the result. For example, consider the
subtraction 0x8000 0000 − 0x0000 0001. If the precision were limited to 32
bits, the result would cause an overflow to the positive number 0x7FFF FFFF
and N would be cleared. However, because the MINL instruction assumes
infinite precision, it would set N to indicate that 0x8000 0000 − 0x0000 0001
actually results in a negative number.

C If (ACC − [loc32]) generates a borrow, clear the C bit; otherwise set C.

V If ACC is less then the contents of the addressed location (ACC < [loc32]),
set V. This instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the MINL instruction will be executed N+1 times. The state of the Z, N, and C
flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs.

Example ; Saturate VarA as follows:
; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
 MOVL ACC,@VarA ; ACC = VarA

 MINL ACC,@MaxPos ; if(ACC > MaxPos) ACC = MaxPos

 MAXL ACC,@MaxNeg ; if(ACC < MaxNeg) ACC = MaxNeg

 MOVL @VarA,ACC ; Store result into VarA

MOV *(0:16bit), loc16

 6-156

MOV *(0:16bit), loc16 Move Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV *(0:16bit),loc16 1111 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

X Y N+2

Operands *(0:16bit) Immediate direct memory address, access low 64K range of data
space only (0x00000000 to 0x0000FFFF)

loc16 Addressing mode (see Chapter 5)

Description Move the content of the location pointed to by the �loc16� addressing
mode to the memory location specified by the �0:16bit� constant address:

[0x0000:16bit] = [loc16];

Flags and
Modes

None

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. When repeated, the �(0:16bit)�
data-memory address is post-incremented by 1 during each repetition.
Only the lower 16 bits of the address is affected.

; Copy the contents of Array1 to Array2:
; int16 Array1[N];
; int16 Array2[N]; // Located in low 64K of data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

Example
 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1

 RPT #(N−1) ; Repeat next instruction N times

||MOV *(0:Array2),*XAR2++ ; Array2[i] = Array1[i],
; i++

MOV ACC,#16bit<<#0..15

6-157

MOV ACC,#16bit<<#0..15 Load Accumulator With Shift

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV ACC,loc16<<#0..15 1111 1111 0010 SHFT
CCCC CCCC CCCC CCCC

X − 1

Operands ACC Accumulator register
#16bit 16-bit immediate constant value
#0..15 Shift value (default is �<< #0� if no value specified)

Description Load the ACC register with the left shifted contents of the 16-bit immediate
value. The shifted value is sign extended if sign extension mode is turned on
(SXM = 1) else the shifted value is zero extended (SXM = 0). The lower bits of
the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled
 ACC = S:16bit << shift value;
else // sign extension mode disabled
 ACC = 0:16bit << shift value;

Flags and N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.g
Modes Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit constant operand will be
sign extended before the load; else, the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = −2010 << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on
MOV ACC,#−2010 << #10 ; Load ACC with −2010 left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

MOV ACC,loc16<<T

 6-158

MOV ACC,loc16<<T Load Accumulator With Shift

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV ACC,loc16 << T 0101 0110 0000 0110
0000 0000 LLLL LLLL

1 − 1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
T Upper 16 bits of the multiplicand register, XT(31:16)

Description Load the ACC register with the left-shifted contents of the 16-bit location
pointed to by the �loc16� addressing mode. The shift value is specified by the
four least significant bits of the T register, T(3:0) = shift value = 0..15. Higher
order bits are ignored. The shifted value is sign extended if sign extension
mode is turned on (SXM = 1) else the shifted value is zero extended
(SXM = 0). The lower bits of the shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled
 ACC = S:[loc16] << T(3:0);
else // sign extension mode disabled
 ACC = 0:[loc16] << T(3:0);

Flags and N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.g
Modes Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the load; else the value will be zero
extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on

MOV T,@SA ; Load T with shift value in SA

MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA

MOV T,@SB ; Load T with shift value in SB

ADD ACC,@VarB << T ; Add to ACC shifted contents of VarB

MOV ACC, loc16<<#0..16

6-159

MOV ACC, loc16<<#0..16 Load Accumulator With Shift

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV ACC,loc16<<#0 1000 0101 LLLL LLLL
1110 0000 LLLL LLLL

1
0

−
−

1
1

MOV ACC, loc16<<#1..15 0101 0110 0000 0011
0000 SHFT LLLL LLLL

1 − 1

1110 SHFT LLLL LLLL 0 − 1

MOV ACC, loc16<<#16 0010 0101 LLLL LLLL X − 1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
#0..16 Shift value (default is �<< #0� if no value specified)

Description Load the ACC register with the left shifted contents of the addressed location
pointed to by the �loc16� addressing mode. The shifted value is sign
extended if sign extension mode is turned on (SXM = 1) else the shifted value
is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled
 ACC = S:[loc16] << shift value;
else // sign extension mode disabled
 ACC = 0:[loc16] << shift value;

Flags and
Modes

N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by
the �loc16� field, will be sign extended before the load; else the value will
be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

MOV AR6/7, loc16

 6-160

MOV AR6/7, loc16 Load Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV AR6, loc16 0101 1110 LLLL LLLL X − 1

MOV AR7, loc16 0101 1111 LLLL LLLL X − 1

Operands AR6/7 AR6 or AR7, auxiliary registers

loc16 Addressing mode (see Chapter 5)

Description Load AR6 or AR7 with the contents of the 16-bit location and leave the upper
16 bits of XAR6 and XAR7 unchanged:

AR6/7 = [loc16];
AR6/7H = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

MOV AX, loc16

6-161

MOV AX, loc16 Load AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV AX, loc16 1001 001A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description Load accumulator high register (AH) or accumulator low register (AL)
register with the 16-bit contents of the location pointed to by the �loc16�
addressing mode, leaving the other half of the accumulator register
unchanged:

AX = [loc16];

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then
this flag is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The bit is set if the operation
results in AX = 0, otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOV AH, *+XAR0[0] ; Load AH with the 16-bit contents
; of location pointed to by XAR0.
; AL is unchanged.

SB NotZero,NEQ ; Branch if contents of AH were non
; zero.

MOV DP, #10bit

 6-162

MOV DP, #10bit Load Data-Page Pointer

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV DP, #10bit 1111 10CC CCCC CCCC X − 1

Operands DP Data page register

#10bit 10-bit immediate constant value

Description Load the data page register with a 10-bit constant leaving the upper 6 bits
unchanged:

DP(9:0) = 10bit;
DP(15:10) = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOV
DP,
#VarA

; Load DP with the data page that

; contains VarA. Assumes VarA is in

; the lower 0x0000 FFC0 of memory.

; DP(15:10) is left unchanged.

MOV IER,loc16

6-163

MOV IER,loc16 Load the Interrupt-Enable Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV IER,loc16 0010 0011 LLLL LLLL X − 5

Operands IER Interrupt-enable register

loc16 Addressing mode (see Chapter 5)

Description Enable and disable selected interrupts by loading the content of the location
pointed to by the �loc16� addressing mode into the IER register:

IER = [loc16];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:

 MOV *SP++,IER ; Save IER on stack
 MOV IER,@VarA ; Load IER with contents of VarA

MOV loc16, #16bit

 6-164

MOV loc16, #16bit Save 16-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, #16bit 0010 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

X Y N+1

Operands loc16 Addressing mode (see Chapter 5)

#16bit 16-bit constant immediate value

Description Load the location pointed to by the �loc16� addressing mode with the 16-bit
constant immediate value:

[loc16] = 16bit;

Note: For #16bit = #0, see the MOV loc16, #0 instruction on page 6-166.

Smart Encoding:
If loc16 = AL or AH and #16bit is an 8-bit number, then the assembler will
encode this instruction as MOVB AX, #8bit to improve efficiency. To override
this, use the MOVW AX, #16bit alias instruction.

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is
set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Initialize the contents of Array1 with 0xFFFF:
; int16 Array1[N];
; for(i=0; i < N; i++)
; Array1[i] = 0xFFFF;
 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 RPT #(N−1) ; Repeat next instruction N times
||MOV *XAR2++,#0xFFFF ; Array1[i] = 0xFFFF,

; i++

MOV loc16, *(0:16bit)

6-165

MOV loc16, *(0:16bit) Move Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, *(0:16bit) 1111 0101 LLLL LLLL
CCCC CCCC CCCC CCCC

X Y N+2

Operands loc16 Addressing mode (see Chapter 5)

*(0:16bit) Immediate direct memory address, access low 64K range of data space
only (0x00000000 to 0x0000FFFF)

Description Move the content of the location specified by the constant direct memory
address �0:16bit� into the location pointed to by the �loc16� addressing
mode:

[loc16] = [0x0000:16bit];

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit
is set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. When repeated, the �(0:16bit)�
data-memory address is post-incremented by 1 during each repetition.
Only the lower 16 bits of the address are affected.

; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in low 64K of data space
; int16 Array2 N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

Example
 MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||MOV *XAR2++,*(0:Array1) ; Array2[i] = Array1[i],

; i++

MOV loc16, #0

 6-166

MOV loc16, #0 Clear 16-bit Location

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, #0 0010 1011 LLLL LLLL X Y N+1

Operands loc16 Addressing mode (see Chapter 5)
#0 Immediate constant value of zero

Description Load the location pointed to by the �loc16� addressing mode with the value
0x0000:

[loc16] = 0x0000;

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is
set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared.

Repeat This instruction is repeatable. If the operation is follows a RPT instruction,
then it will be executed N+1 times.

Example ; Initialize the contents of Array1 with zero:
; int16 Array1[N];
; for(i=0; i < N; i++)
; Array1[i] = 0;
 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 RPT #(N−1) ; Repeat next instruction N times
||MOV *XAR2++,#0 ; Array1[i] = 0,

; i++

MOV loc16,ACC << 1..8

6-167

MOV loc16,ACC << 1..8 Save Low Word of Shifted Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, ACC << 1 1011 0001 LLLL LLLL 1 Y N+1

MOV loc16, ACC << 2..8 0101 0110 0010 1101
0000 0SHF LLLL LLLL

1 Y N+1

1011 1SHF LLLL LLLL 0 − 1

Operands loc16 Addressing mode (see Chapter 5)
ACC Accumulator register
#1..8 Shift value

Description Load the content of the location pointed to by the �loc16� addressing mode
with the low word of the ACC register after left−shifting by the specified value.
The ACC register is not modified:

[loc16] = ACC >> (16 − shift value); [loc16] = low (ACC
<<1...8)

Flags and

Modes

N If (loc16 = @AX), then after the load AX is checked for a negative condition.
The N flag is set if bit 15 of the AX is 1; else N is cleared.

Z If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z
flag is set if AX is zero; else Z is cleared.

Repeat If the operation is repeatable, then the instruction will be executed N+1
times. The state of the Z and N flags will reflect the final result. If the operation
is not repeatable, the instruction will execute only once.

Example ; Multiply two Q15 numbers (VarA and VarB) and store result in
; VarC as a Q15 number:

MOV T,@VarA ; T = VarA (Q15)

MPY ACC,T,@VarB ; ACC = VarA * VarB (Q30)

MOVH @VarC,ACC << 1 ; VarC = ACC >> (16−1) (Q15)

; VarC as a Q31 number:
MOV T,@VarA ; T = VarA (T = Q14)
MPY ACC,T,@VarB ; ACC = VarA * VarB (ACC = Q28)
MOV @VarC+0,ACC << 3 ; VarC low = ACC << 3
MOVH @VarC+1,ACC << 3 ; VarC high = ACC >> (16−1) (VarC = Q31)

MOV loc16, ARn

 6-168

MOV loc16, ARn Store 16-bit Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, ARn 0111 1nnn LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

ARn AR0 to AR7, lower 16 bits of auxiliary registers

Description Load the contents of the 16-bit location with ARn:

[loc16] = ARn;

If(loc16 = @ARn), then only the lower 16 bits of the selected auxiliary register
is modified. The upper 16 bits is unchanged.

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. Bit-15
of the AX register is the sign bit, 0 for positive, 1 for negative. The negative
flag bit is set if the operation on the AX register generates a negative value,
otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is
set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared

Repeat This instruction is repeatable. If the operation is follows a RPT instruction,
then it will be executed N+1 times.

Example MOV @AL, AR3

MOV @AR4,AR3

MOV *SP++,AR3

MOV *XAR4++,AR4

MOV *−−XAR5,AR5

; Load AL with the 16-bit contents of
; AR3. If bit 15 of AL is 1, set the
; N flag, else clear it.
; If AL is 0, set the Z flag.

; Load AR4 with the value in AR3.
; Upper 16 bits of XAR4 are
; unchanged.

; Push the contents of AR3 onto the
; stack. Post increment SP.

; Store contents of AR4 into location
; specified by XAR4. Post-increment
; the contents of XAR4.

; Pre-decrement the contents of XAR5.
; Store the contents of AR5 into the
; location specified by XAR5.

MOV loc16, AX

6-169

MOV loc16, AX Store AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, AX 1001 011A LLLL LLLL X Y N+1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Load the addressed location pointed to by the �loc16� addressing mode with
the 16-bit content of the specified AX register (AH or AL):

[loc16] = AX;

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is
set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared.

Repeat If this operation follows a RPT instruction, then it will be executed N+1 times.
The state of the N and Z flags will reflect the final result.

Example ; Initialize all Array1 elements with the value 0xFFFF:

 MOV AH,#0xFFFF ; Load AH with the value 0xFFFF

 MOVL XAR2,#Array1 ; Load XAR2 with address of Array1

 RPT #9

|| MOV *XAR2++, AH

; Repeat next instruction 10 times.

; Store contents of AH into location
; pointed by XAR2 and post-increment
; XAR2.

MOV loc16, AX, COND

 6-170

MOV loc16, AX, COND Store AX Register Conditionally

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16, AX, COND
0101 0110 0010 101A
0000 COND LLLL LLLL 1 − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register
COND Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Then Z = 0 AND N = 0
0011 GEQ Greater Then Or Equal To N = 0
0100 LT Less Then N = 1
0101 LEQ Less Then Or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher Or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower Or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional −

Description If the specified condition being tested is true, then the location pointed to by the
�loc16� addressing mode will be loaded with the contents of the specified AX reg-
ister (AH or AL):
if(COND = true) [loc16] = AX;
Note: Addressing modes are not conditionally executed. Hence, if an addressing mode

performs a pre or post modification, the modification will occur, regardless of whether
the condition is true or not.

Flags and
Modes

N If (COND = true AND loc16 = @AX), AX is tested for a negative condition after
the move and if bit 15 of AX is 1, the negative flag bit is set.

Z If (COND = true AND loc16 = @AX), after the move, AX is tested for a zero
condition and the zero flag bit is set if AX = 0, otherwise, it is cleared.

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

MOV loc16, AX, COND

6-171

Example ; Swap the contents of VarA and VarB if VarB is higher then VarA:

MOV AL,@VarA ; AL = VarA, XAR2 points to VarB
MOV AH,@VarB ; AH = VarB, XAR2 points to VarA
CMP AH,@AL ; Compare AH and AL
MOV @VarA,AH,HI ; Store AH in VarA if higher
MOV @VarB,AL,HI ; Store AL in VarB if higher

MOV loc16,IER

 6-172

MOV loc16,IER Store Interrupt-Enable Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16,IER 0010 0000 LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

IER Interrupt enable register

Description Save the content of the IER register in the location pointed to by the �loc16�
addressing mode:

[loc16] = IER;

Flags and N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.g
Modes Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is

cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:

 MOV *SP++,IER ; Save IER on stack
 MOV IER,@VarA ; Load IER with contents of VarA

MOV loc16,OVC

6-173

MOV loc16,OVC Store the Overflow Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16,OVC 0101 0110 0010 1001
0000 0000 LLLL LLLL

1 − 1

Operands loc16 Addressing mode (see Chapter 5)

OVC Overflow counter

Description Store the 6 bits of the overflow counter (OVC) into the upper 6 bits of the
location pointed to by the �loc16� addressing mode and zero the lower 10 bits
of the addressed location:

[loc16(15:10)] = OVC;
[loc16(9:0)] = 0;

Flags and N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.g
Modes Z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOV *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOV OVC,*−−SP ; Restore OVC from stack

MOV loc16,P

 6-174

MOV loc16,P Store Lower Half of Shifted P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV loc16,P 0011 1111 LLLL LLLL X Y N+1

Operands loc16 Addressing mode (see Chapter 5)

P Product register

Description The contents of the P register are shifted by the amount specified in the
product shift mode (PM), and the lower half of the shifted value is stored into
the 16-bit location pointed to by the �loc16� addressing mode. The P register
is not modified by the operation:

[loc16] = P << PM;

Flags and
Modes

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set;
otherwise, N is cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is
set; otherwise Z is cleared.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, and N flags will reflect the
final result.

Example ; Calculate Y32 = M16*X16 >> 6

MOV T,@M16 ; T = M

MPY P,T,@X16 ; P = T * X

SPM −6 ; Set product shift to >> 6

MOV @Y32+0,P ; Y32 = P >> 6

MOVH @Y32+1,P

MOV loc16, T

6-175

MOV loc16, T Store the T Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV, loc16,T 0010 0001 LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

T Upper 16 bits of the multiplicand register (XT)

Description Store the 16-bit T register contents into the location pointed to by the �loc16�
addressing mode:

[loc16] = T;

Flags and
Modes

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set;
otherwise, N is cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is
set; otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

MOV OVC, loc16

 6-176

MOV OVC, loc16 Load the Overflow Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV OVC, loc16 0101 0110 0000 0010

0000 0000 LLLL LLLL

1 − 1

Operands OVC 6-bit overflow counter

Description Load the overflow counter (OVC) with the upper 6 bits of the location pointed
to by the �loc16� addressing mode:

OVC = [loc16(15:10)];

Flags and
Modes

OVC The 6-bit overflow counter is modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:

MOV *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH
.
.
.
.

; Save AH on stack

MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOV OVC,*−−SP ; Restore OVC from stack

MOV PH, loc16

6-177

MOV PH, loc16 Load the High Half of the P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV PH, loc16 0010 1111 LLLL LLLL X − 1

Operands PH Upper 16 bits of the product register (P)

loc16 Addressing mode (see Chapter 5)

Description Load the high 16 bits of the P register (PH) with the 16-bit location pointed to
by the �loc16� addressing mode; leave the lower 16 bits (PL) unchanged:

PH = [loc16];
PL = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of AH and AL:

MOV PH,@AL ; Load PH with AL

MOV PL,@AH ; Load PL with AH

MOV ACC,@P ; Load ACC with P (AH and AL swapped)

MOV PL, loc16

 6-178

MOV PL, loc16 Load the Low Half of the P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL PL, loc16 0010 0111 LLLL LLLL X − 1

Operands PL Lower 16 bits of the product register (P)

loc16 Addressing mode (see Chapter 5)

Description Load the high 16 bits of the P register (PL) with the 16-bit location pointed to
by the �loc16� addressing mode; leave the lower 16 bits (PH) unchanged:

PL = [loc16];
PH = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of AH and AL:

MOV PH,@AL ; Load PH with AL

MOV PL,@AH ; Load PL with AH

MOV ACC,@P ; Load ACC with P (AH and AL swapped)

MOV PM, AX

6-179

MOV PM, AX Load Product Shift Mode

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV PM, AX 0101 0110 0011 100A 1 − 1

Operands AX Accumulator high (AH) or accumulator low (AL) registers.

Description Load the product shift mode (PM) bits with the 3 least significant bits of
register AX.

PM = AX(2:0);

Flags and
Modes

PM The product shift mode bits are loaded with the 3 least significant bits of
AX.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y32 = (M16*X16 >> Shift) + B32, Shift = 0 to 6
CLRC AMODE ; Make sure AMODE = 0
MOV AL,@Shift ; Load AL with contents of ”Shift”
ADDB AL,#1 ; Convert ”Shift” to PM encoding
MOV PM,AX ; Load PM bits with encoded ”Shift” value
MOV T,@X16 ; T = X16
MPY P,XT,@M16 ; P = X16*M16
MOVL ACC,@B32 ; ACC = B32
ADDL ACC,P << PM ; ACC = ACC + (P >> Shift)
MOVL @Y32,ACC ; Store result into Y32

MOV T, loc16

 6-180

MOV T, loc16 Load the Upper Half of the XT Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV T, loc16 0010 1101 LLLL LLLL X − 1

Operands T Upper 16 bits of the multiplicand register (XT)

loc16 Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit contents of the location pointed to by the
�loc16� addressing mode:

T = [loc16];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

MOV TL, #0

6-181

MOV TL, #0 Clear the Lower Half of the XT Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV TL, #0 0101 0110 0101 0110 1 − 1

Operands T Upper 16 bits of the multiplicand register (XT)

#0 Immediate constant value of zero

Description Load the lower half of the multiplicand register (TL) with zero, leaving the
upper half (T) unchanged:

TL = 0x0000;
T = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate and keep low 32-bit result: Y32 = M32*X16 >> 32

MOV TL,#0 ; TL = 0

MOV T,@X16 ; T = X16

IMPYL P,XT,@M32 ; P = XT * M32 (high 32-bit of result)

MOVL @Y32,P ; Store result into Y32

MOV XARn, PC

 6-182

MOV XARn, PC Save the Current Program Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOV XARn, PC 0011 1110 0101 1nnn 1 − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers

loc32 Addressing mode (see Chapter 5)

PC 22-bit program counter

Description Load XARn with the contents of the PC:

XARn = 0:PC;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example TableA:

.long CONST1

.long CONST2

.long CONST3

.

FuncA:

 MOV XAR5,PC

 SUBB XAR5,#($−TableA)

 MOVL ACC,*+XAR5[2]

 MOVL @VarA,ACC

; Location of TableA is relative to

; the current program

; XAR5 = current PC location

; XAR5 = TableA start location

; Load ACC with CONST2

; Store CONST2 in VarA

MOVA T,loc16

6-183

MOVA T,loc16 Load T Register and Add Previous Product

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVA, T,loc16 0001 0000 LLLL LLLL X Y N+1

Operands T Upper 16 bits of the multiplicand register (XT)

loc16 Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the
�loc16� addressing mode. Also, the content of the P register, shifted by the
amount specified by the product shift mode (PM) bits, is added to the content
of the ACC register:

T = [loc16];
ACC = ACC + P << PM;

Flags and
Modes

N After the operation, if bit 31 of the ACC register is 1, the N bit is set; otherwise,
N is cleared.

Z After the operation, if the value of ACC is zero, the Z bit is set; otherwise Z is
cleared.

C If the addition generates a carry, then C is set; otherwise, C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, the counter is incremented. If overflow mode is disabled; and if the
operation generates a negative overflow, the counter is decremented.

OVM If overflow mode bit is set; the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, it will
be executed N+1 times. The state of the Z, N, C and OVC flags reflect the
final result. The V flag will be set if an intermediate overflow occurs.

MOVA T,loc16

 6-184

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2

MOV T,@X2 ; T = X2

MPY P,T,@C2 ; P = T*C2

MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2

MPY P,T,@C1 ; P = T*C1

MOV @X2,T ; X2 = X1

MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2

MPY P,T,@C0 ; P = T*C0

MOV @X1,T ; X1 = X0

ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2

MOVL @Y,ACC ; Store result into Y

MOVAD T, loc16

6-185

MOVAD T, loc16 Load T Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVAD T, loc16 1010 0111 LLLL LLLL 1 N 1

Operands T Upper 16 bits of the multiplicand register (XT)

loc16 Addressing mode (see Chapter 5)
Note: For this operation, register-addressing modes cannot be used. The modes are: @ARn,

@AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

Description Load the T register with the 16-bit content of the location pointed to by the
�loc16� addressing mode and then load the next highest 16-bit location
pointed to by �loc16� with the content of T. In addition, add the content of the P
register, shifted by the amount specified by the product shift mode (PM) bits,
to the content of the ACC register:

T = [loc16];
[loc16 + 1] = T;
ACC = ACC + P << PM;

Flags and
Modes

N After the operation, if bit 31 of the ACC register is 1, then the N bit is set;
otherwise, N is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise
Z is cleared.

C If the addition generates a carry, the C bit is set; otherwise, C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

MOVAD T, loc16

 6-186

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2

MOVP T,@X2 ; T = X2

MPYS P,T,@C2 ; P = T*C2, ACC = 0

MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1

MPY P,T,@C1 ; P = T*C1

MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0

MPY P,T,@C0 ; P = T*C0

ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2

MOVL @Y,ACC ; Store result into Y

MOVB ACC,#8bit

6-187

MOVB ACC,#8bit Load Accumulator With 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB ACC,#8bit 0000 0010 CCCC CCCC 1 − 1

Operands ACC Accumulator register

#8bit 8-bit immediate unsigned constant value

Description Load the ACC register with the specified 8-bit, zero-extended immediate
constant:

ACC = 0:8bit;

Flags and N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.g
Modes Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Increment contents of 32-bit location VarA:
MOVB ACC,#1 ; Load ACC with the value 0x0000 0001
ADDL ACC,@VarA ; Add to ACC the contents of VarA
MOVL @VarA,ACC ; Store result back into VarA

MOVB AR6/7, #8bit

 6-188

MOVB AR6/7, #8bit Load Auxiliary Register With an 8-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB AR6, #8bit 1101 0110 CCCC CCCC X − 1

MOVB AR7, #8bit 1101 0111 CCCC CCCC X − 1

Operands XARn XAR6 OR XAR7, 32-bit auxiliary registers

#8bit 8-bit immediate constant value

Description Load AR6 or AR7 with an 8-bit unsigned constant and upper 16 bits of XAR6
and XAR7 are unchanged:

AR6/7 = 0:8bit;
AR6/7H = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once

MOVB AX, #8bit

6-189

MOVB AX, #8bit Load AX With 8-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB AX, #8bit 1001 101A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit 8-bit immediate constant value

Description Load accumulator high register (AH) or accumulator low register (AL) with an
unsigned 8-bit constant zero extended, leaving the other half of the
accumulator register unchanged:

AX = 0:8bit;

Flags and
Modes

N Flag always set to zero.

Z The load to AX is tested for a zero condition. The bit is set if the operation
results in AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVB AL, #0xF0 ; Load AL with the value 0x00F0.

CMP AL,*+XAR0[0] ; Compare contents pointed to by XAR0
; with AL.

SB Dest,EQ ; Branch if values are equal.

MOVB AX.LSB, loc16

 6-190

MOVB AX.LSB, loc16 Load Byte Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB AX.LSB, loc16 1100 011A LLLL LLLL X − 1

Operands AX.LS
B

Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

loc16 Addressing mode (see Chapter 5)

Description Load the least significant byte of the specified AX register (AH.LSB or
AL.LSB) with 8 bits from the location pointed to by the �loc16� addressing
mode. The most significant byte of AX is cleared. The form of the �loc16�
operand determines which of its 8 bits are used to load AX.LSB:

if(loc16 = *+XARn[offset])
{
if(offset is an even number)

AX.LSB = [loc16.LSB];
if(offset is an odd value)

AX.LSB = [loc16.MSB];
}

else
AX.LSB = [loc16.LSB];

AX.MSB = 0x00;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)

*0++ (AMODE = x)

*0−− (AMODE = x)

*BR0++ (AMODE = x)

*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)

*0−−, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)

*BR0−−, ARPn (AMODE = 1)

Flags and
Modes

Z After the move, AX is tested for a zero condition. The zero flag bit is set if
AX = 0; otherwise it is cleared

N After the move, AX is tested for a negative condition. The bit is set if bit 15 of
AX is 1; otherwise it is cleared.

MOVB AX.LSB, loc16

6-191

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the byte order in the 32-bit ”Var32” location.
; Before operation: Var32 = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of ”Var32”

MOVB AL.LSB,*+XAR2[3] ; ACC(B0) = Var32(B3), ACC(B1) = 0
MOVB AH.LSB,*+XAR2[1] ; ACC(B2) = Var32(B1), ACC(B3) = 0
MOVB AL.MSB,*+XAR2[2] ; ACC(B1) = Var32(B2), ACC(B1) = unch
MOVB AH.MSB,*+XAR2[0] ; ACC(B3) = Var32(B0), ACC(B1) = unch
MOVL @Var32,ACC ; Store swapped result in ”Var32”

MOVB AX.MSB, loc16

 6-192

MOVB AX.MSB, loc16 Load Byte Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB AX.MSB, loc16 0011 100A LLLL LLLL X − 1

Operands AX.MS
B

Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

loc16 Addressing mode (see Chapter 5)

Description Load the most significant byte of the specified AX register (AH.MSB or
AH.LSB) with 8 bits from the location pointed to by the �loc16� addressing
mode. The least significant byte of AX is left unchanged. The form of the
�loc16� operand determines which of its 8 bits are used to load AX.MSB

if(loc16 = *+XARn[offset])
{
if(offset is an even value)

AX.MSB = [loc16.LSB];
if(offset is an odd value)

AX.MSB = [loc16.MSB];
}

else
AX.MSB = [loc16.LSB];

AX.LSB = unchanged;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)

*0++ (AMODE = x)

*0−− (AMODE = x)

*BR0++ (AMODE = x)

*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)

*0−−, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)

*BR0−−, ARPn (AMODE = 1)

Flags and
Modes

N After the move AX is tested for a negative condition. The negative flag bit is
set if bit 15 of AX is 1; otherwise it is cleared.

Z After the move, AX is tested for a zero condition. The zero flag bit is set if
AX = 0; otherwise it is cleared.

MOVB AX.MSB, loc16

6-193

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the byte order in the 32-bit ”Var32” location.
; Before operation: Var32 = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of ”Var32”

MOVB AL.LSB,*+XAR2[3] ; ACC(B0) = Var32(B3), ACC(B1) = 0
MOVB AH.LSB,*+XAR2[1] ; ACC(B2) = Var32(B1), ACC(B3) = 0
MOVB AL.MSB,*+XAR2[2] ; ACC(B1) = Var32(B2), ACC(B1) = unch
MOVB AH.MSB,*+XAR2[0] ; ACC(B3) = Var32(B0), ACC(B1) = unch
MOVL @Var32,ACC ; Store swapped result in ”Var32”

MOVB loc16,#8bit,COND

 6-194

MOVB loc16,#8bit,COND Conditionally Save 8-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB loc16,#8bit,COND 0101 0110 1011 COND
CCCC CCCC LLLL LLLL

1 − 1

Operands loc16 Addressing mode (see Chapter 5)
#8bit 8-bit immediate constant value
COND Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry Set C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description If the specified condition being tested is true, then the 8-bit zero extended
constant is stored in the location pointed to by the �loc16� addressing mode:

if(COND = true) [loc16] = 0:8bit;

Note: Addressing modes are not conditionally executed; therefore, if an addressing mode
performs a pre- or post-modification, it will execute regardless of whether the condition
is true or not.

Flags and
Modes

N If (COND = true AND loc16 = @AX), then after the move AX is tested for a
negative condition. The negative flag bit is set if bit 15 of AX is 1, otherwise it
is cleared.

Z If (COND = true AND loc16 = @AX), then after the move, AX is tested for a
zero condition. The zero flag bit is set if AX = 0, otherwise it is cleared.

V If the V flag is tested by the condition, then V is cleared.

MOVB loc16,#8bit,COND

6-195

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate:
; if(VarA > 20)
; VarA = 0;

 CMP @VarA,#20 ; Set flags on (VarA − 20)
 MOVB @VarA,#0,GT ; Zero VarA if greater then

MOVB loc16, AX.LSB

 6-196

MOVB loc16, AX.LSB Store LSB of AX Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB loc16, AX.LSB 0011 110A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX.LS
B

Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

Description Load 8 bits of the location pointed to by the �loc16� addressing mode with the
least significant byte of the specified AX register (AH.LSB or AL.LSB). The
form of the �loc16� operand determines which of its 8 bits are loaded and
which of its 8 bits are left unchanged:

if(loc16 = *+XARn[offset])
{
if(offset is an even value)

[loc16.LSB] = AX.LSB;
[loc16.MSB] = unchanged;

if(offset is an odd value)
[loc16.LSB] = unchanged;
[loc16.MSB] = AX.LSB;

 }
else

[loc16.LSB] = AX.LSB;
[loc16.MSB] = unchanged;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

This is a read-modify-write operation.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)

*0++ (AMODE = x)

*0−− (AMODE = x)

*BR0++ (AMODE = x)

*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)

*0−−, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)

*BR0−−, ARPn (AMODE = 1)

Flags and
Modes

N If (loc16 = @AX), then after the move AX is tested for a negative condition.
The negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The
zero flag bit is set if AX = 0, otherwise it is cleared.

MOVB loc16, AX.LSB

6-197

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of ”Var32” location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of ”Var32”

MOVB *+XAR2[0],AH.MSB ; Var32(B0) = ACC(B3)
MOVB *+XAR2[1],AH.LSB ; Var32(B1) = ACC(B2)
MOVB *+XAR2[2],AL.MSB ; Var32(B2) = ACC(B1)
MOVB *+XAR2[3],AL.LSB ; Var32(B3) = ACC(B0)

MOVB loc16, AX.MSB

 6-198

MOVB loc16, AX.MSB Store MSB of AX Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB loc16, AX.MSB 1100 100A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX.MS
B

Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

Description Load 8 bits of the location pointed to by the �loc16� addressing mode with the
most significant byte of the specified AX register (AH.MSB or AL.MSB). The
form of the �loc16� operand determines which of its 8 bits are loaded and
which of its 8 bits are left unchanged:

if(loc16 = *+XARn[offset])
{
if(offset is an even number)

[loc16.LSB] = AX.MSB;
[loc16.MSB] = unchanged;

if(offset is an odd number)
[loc16.LSB] = unchanged;
[loc16.MSB] = AX.MSB;

}
else

[loc16.LSB] = AX.MSB;
[loc16.MSB] = unchanged;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

This is a read-modify-write operation.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)

*0++ (AMODE = x)

*0−− (AMODE = x)

*BR0++ (AMODE = x)

*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)

*0−−, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)

*BR0−−, ARPn (AMODE = 1)

Flags and
Modes

N If (loc16 = @AX), then after the move AX is tested for a negative condition.
The negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The
zero flag bit is set if AX = 0, otherwise it is cleared.

MOVB loc16, AX.MSB

6-199

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of ”Var32” location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of ”Var32”

MOVB *+XAR2[0],AH.MSB ; Var32(B0) = ACC(B3)
MOVB *+XAR2[1],AH.LSB ; Var32(B1) = ACC(B2)
MOVB *+XAR2[2],AL.MSB ; Var32(B2) = ACC(B1)
MOVB *+XAR2[3],AL.LSB ; Var32(B3) = ACC(B0)

MOVB XARn, #8bit

 6-200

MOVB XARn, #8bit Load Auxiliary Register With 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVB XAR0…5, #8bit 1101 0nnn CCCC CCCC X − 1

MOVB XAR6, #8bit 1011 1110 CCCC CCCC 1 − 1

MOVB XAR7, #8bit 1011 0110 CCCC CCCC 1 − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers

#8bit 8-bit immediate constant value

Description Load XARn with the 8-bit unsigned immediate value:

XARn = 0:8bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVB XAR0, #F2h ; Load XAR0 with 0x0000 00F2

MOVDL XT,loc16

6-201

MOVDL XT,loc16 Store XT and Load New XT

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVDL XT,loc16 1010 0110 LLLL LLLL 1 Y N+1

Operands XT Multiplicand register

loc32 Addressing mode (see Chapter 5)
Note: For this operation, register-addressing modes cannot be used. The modes are:

@XARn, @ACC, @P, @XT. An illegal instruction trap will be generated.

Description Load the XT register with the 32-bit content of the location pointed to by the
�loc32� addressing mode and then load the next highest 32-bit location
pointed to by �loc32� with the content of XT:

XT = [loc32];
[loc32 + 2] = XT;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0

SPM −2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVDL XT,@X1 ; XT = X1, ACC = X2*C2>>2, X2 = X1
QMPYAL P,XT,@C1 ; P = XT*C1
MOVDL XT,@X0 ; XT = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
QMPYAL P,XT,@C0 ; P = XT*C0
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

MOVH loc16,ACC << 1..8

 6-202

MOVH loc16,ACC << 1..8 Save High Word of Shifted Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVH loc16, ACC << 1 1011 0011 LLLL LLLL 1 Y N+1

MOVH loc16, ACC << 2..8 0101 0110 0010 1111
0000 0SHF LLLL LLLL

1 Y N+1

1011 0SHF LLLL LLLL 0 − 1

Operands loc16 Addressing mode (see Chapter 5)
ACC Accumulator register
#1..8 Shift value

Description Load the content of the location pointed to by the �loc16� addressing mode
with the high word of the ACC register after left−shifting by the specified
value. The ACC register is not modified:

[loc16] = ACC >> (16 − shift value);

Flags and

Modes

N If (loc16 = @AX), then after the load AX is checked for a negative condition.
The N flag is set if bit 15 of the AX is 1; else N is cleared.

Z If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z
flag is set if AX is zero; else Z is cleared.

Repeat If the operation is repeatable, then the instruction will be executed N+1
times. The state of the Z and N flags will reflect the final result. If the operation
is not repeatable, the instruction will execute only once.

Example ; Multiply two Q15 numbers (VarA and VarB) and store result in
; VarC as a Q15 number:

MOV T,@VarA ; T = VarA (Q15)

MPY ACC,T,@VarB ; ACC = VarA * VarB (Q30)

MOVH @VarC,ACC << 1 ; VarC = ACC >> (16−1) (Q15)

; VarC as a Q31 number:
MOV T,@VarA ; T = VarA (T = Q14)
MPY ACC,T,@VarB ; ACC = VarA * VarB (ACC = Q28)
MOV @VarC+0,ACC << 3 ; VarC low = ACC << 3
MOVH @VarC+1,ACC << 3 ; VarC high = ACC >> (16−1) (VarC = Q31)

MOVH loc16, P

6-203

MOVH loc16, P Save High Word of the P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVH loc16,P 0101 0111 LLLL LLLL X Y N+1

Operands loc16 Addressing mode (see Chapter 5)

P Product register

Description The contents of the P register are shifted by the amount specified in the
product shift mode (PM), and the upper half of the shifted value is stored into
the 16-bit location pointed to by the �loc16� addressing mode. The P register
is not modified by the operation:

[loc16] = (P << PM) >> 16;

Flags and
Modes

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set;
otherwise, N is cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is
set; otherwise Z is cleared.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, and N flags will reflect the
final result.

Example ; Calculate Y32 = M16*X16 >> 6

MOV T,@M16 ; T = M
MPY P,T,@X16 ; P = T * X
SPM −6 ; Set product shift to >> 6
MOV @Y32+0,P ; Y32 = P >> 6
MOVH @Y32+1,P

MOVL ACC,loc32

 6-204

MOVL ACC,loc32 Load Accumulator With 32 Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL ACC,loc32 0000 0110 LLLL LLLL X − 1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Load the ACC register with the content of the location pointed to by the
�loc32� addressing mode.

ACC = [loc32];

Flags and
Modes

N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = VarA + VarB;

MOVL ACC,@VarA ; Load ACC with contents of VarA

ADDL ACC,@VarB ; Add to ACC the contents of VarB

MOVL @VarC,ACC ; Store result into VarC

MOVL ACC,P << PM

6-205

MOVL ACC,P << PM Load the Accumulator With Shifted P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL ACC,P << PM 0001 0110 1010 1100 X − 1

Note: This instruction is an alias for the �MOVP T,loc16� operation with �loc16 = @T� addressing mode.

Operands ACC Accumulator register

P Product register

<< PM Product shift mode

Description Load the ACC register with the content of the P register shifted as specified
by the product shift mode (PM):

ACC = P << PM;

Flags and
Modes

N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y = Y + (M*X >> 4)
; Y is a 32-bit value, M and X are 16-bit values
SPM −4 ; Set product shift to >> 4

MOV T,@M ; T = M

MPY P,T,@X ; P = M * X

MOVL ACC,P << PM ; ACC = M*X >> 4

ADDL @Y,ACC ; Y = Y + ACC

MOVL loc32, ACC

 6-206

MOVL loc32, ACC Store 32-bit Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL loc32, ACC 0001 1110 LLLL LLLL X − 1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Store the contents of the ACC register into the location pointed to by the
�loc32� addressing mode:

[loc32] = ACC;

Flags and
Modes

N If (loc32 = @ACC) then after the load, the N flag is set if bit 31 of the ACC
is 1, else N is cleared.

Z If (loc32 = @ACC) then after the load, the Z flag is set if ACC is zero, else
Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = VarA + VarB;

MOVL ACC,@VarA ; Load ACC with contents of VarA

ADDL ACC,@VarB ; Add to ACC the contents of VarB

MOVL @VarC,ACC ; Store result into VarC

MOVL loc32,ACC,COND

6-207

MOVL loc32,ACC,COND Conditionally Store the Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL loc32,ACC,COND
0101 0110 0100 1000
0000 COND LLLL LLLL X − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

COND Conditional codes:

COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry Set C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description If the specified condition being tested is true, then the location pointed to by
the �loc32� addressing mode will be loaded with the contents of the ACC
register:

if(COND = true) [loc32] = ACC;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode
performs a pre or post modification, the modification will occur regardless of whether
the condition is true or not.

MOVL loc32,ACC,COND

 6-208

Flags and
Modes

N If (COND = true AND loc32 = @ACC), then after the move if bit 31 of
ACC is 1, N is set; otherwise N cleared.

Z If (COND = true AND loc32 = @ACC), then after the move if (ACC = 0), then
the Z bit is set; otherwise it is cleared.

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:

MOVL ACC,@VarB ; ACC = VarB

MOVL P,@VarA ; P = VarA

CMPL ACC,@P ; Set flags on (VarB − VarA)

MOVL @VarA,ACC,HI ; VarA = ACC if higher

MOVL @P,ACC,HI ; P = ACC if higher

MOVL @VarA,P ; VarA = P

MOVL loc32,P

6-209

MOVL loc32,P Store the P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL loc32,P 1010 1001 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

P Product register

Description Store the P register contents into the location pointed to by the �loc32�
addressing mode:

[loc32] = P;

Flags and
Modes

N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set;
otherwise, N is cleared.

Z If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is
set; otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:

MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

MOVL loc32, XARn

 6-210

MOVL loc32, XARn Store 32-bit Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL loc32, XAR0 0011 1010 LLLL LLLL 1 − 1

MOVL loc32, XAR1 1011 0010 LLLL LLLL 1 − 1

MOVL loc32, XAR2 1010 1010 LLLL LLLL 1 − 1

MOVL loc32, XAR3 1010 0010 LLLL LLLL 1 − 1

MOVL loc32, XAR4 1010 1000 LLLL LLLL 1 − 1

MOVL loc32, XAR5 1010 0000 LLLL LLLL 1 − 1

MOVL loc32, XAR6 1100 0010 LLLL LLLL X − 1

MOVL loc32, XAR7 1100 0011 LLLL LLLL X − 1

Operands loc32 Addressing mode (see Chapter 5)

XARn XAR0 to XAR7, 32-bit auxiliary registers

Description Load the contents of the 32-bit addressed location with the contents of
XARn:

[loc32] = XARn;

Flags and
Modes

N If (loc32 = @ACC), then the load to ACC is tested for a negative condition.
Bit-31 of the ACC register is the sign bit, 0 for positive, 1 for negative. The
negative flag bit is set if the operation on the ACC register generates a
negative value, otherwise it is cleared.

Z If (loc32 = @ACC), then the load to ACC is tested for a zero condition. The bit
is set if the result of the operation on the ACC register generates a 0 value,
otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL @ACC, XAR0 ; Move the 32-bit contents of XAR0 into ACC.
; If bit 31 of the ACC is 1 set N. If
; ACC = 0, set Z.

MOVL *XAR1, XAR7 ; Move the 32-bit contents of XAR7 into the
; location pointed to by XAR1.

MOVL *XAR6++,XAR6 ; Move the 32-bit contents of XAR6 into the
; location pointed to by XAR6. Post-increment
; the contents of XAR6.

MOVL *−−XAR5,XAR5 ; Predecrement the contents of XAR5. Move the
; 32-bit contents of XAR5 into the location
; pointed to by ; XAR5.

MOVL loc32,XT

6-211

MOVL loc32,XT Store the XT Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL loc32,XT 1010 1011 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

XT Multiplicand register

Description Store the T register into 32-bit location pointed to by the �loc32� addressing
mode:

[loc32] = XT;

Flags and
Modes

N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set;
otherwise, N is cleared.

Z If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is
set; otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0

SPM −2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVL XT,@X1 ; XT = X1, ACC = X2*C2 >> 2
QMPYAL P,XT,@C1 ; P = XT*C1
MOVL @X2,XT ; X2 = X1
MOVL XT,@X0 ; XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
QMPYAL P,XT,@C0 ; P = XT*C0
MOVL @X1,XT ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

MOVL P,ACC

 6-212

MOVL P,ACC Load P From the Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL P,ACC 1111 1111 0101 1010 X − 1

Operands P Product register

ACC Accumulator register

Description Load the P register with the content of the ACC register:

P = ACC;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = abs(VarA) + abs(VarB)

MOVL ACC,@VarA ; Load ACC with contents of VarA

ABS ACC ; Take absolute value of VarA

MOVL P,ACC ; Temp save ACC in P register

MOVL ACC,@VarB ; Load ACC with contents of VarB

ABS ACC ; Take absolute value of VarB

ADDL ACC,@P ; Add contents of P to ACC

MOVL @VarC,ACC ; Store result into VarC

MOVL P,loc32

6-213

MOVL P,loc32 Load the P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL P,loc32 1010 0011 LLLL LLLL 1 − 1

Operands P Product register

loc32 Addressing mode (see Chapter 5)

Description Load the P register with the 32-bit location pointed to by the �loc32�
addressing mode:

P = [loc32];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:

MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

MOVL XARn, loc32

 6-214

MOVL XARn, loc32 Load 32-bit Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL XAR0, loc32 1000 1110 LLLL LLLL 1 − 1

MOVL XAR1, loc32 1000 1011 LLLL LLLL 1 − 1

MOVL XAR2, loc32 1000 0110 LLLL LLLL 1 − 1

MOVL XAR3, loc32 1000 0010 LLLL LLLL 1 − 1

MOVL XAR4, loc32 1000 1010 LLLL LLLL 1 − 1

MOVL XAR5, loc32 1000 0011 LLLL LLLL 1 − 1

MOVL XAR6, loc32 1100 0100 LLLL LLLL X − 1

MOVL XAR7, loc32 1100 0101 LLLL LLLL X − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers

loc32 Addressing mode (see Chapter 5)

Description Load XARn with the contents of the 32-bit addressed location:

XARn = [loc32];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR0,@ACC ; Move the 32-bit contents of ACC into
; XAR0

MOVL XAR2,*XAR0++ ; Move the 32-bit value pointed to by
; XAR0 into XAR2. Post increment XAR0
; by 2

MOVL XAR3,*XAR3++ ; Move the 32-bit value pointed to by
; XAR3 into XAR3. Address modification
; of XAR3 is ignored.

MOVL XAR4,*−−XAR4 ; Predecrement the contents of XAR4.
; Move the 32-bit value pointed to by
; XAR4 into XAR4.

MOVL XARn, #22bit

6-215

MOVL XARn, #22bit Load 32-bit Auxiliary Register With Constant Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL XAR0, #22bit 1000 1101 00CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR1, #22bit 1000 1101 01CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR2, #22bit 1000 1101 10CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR3, #22bit 1000 1101 11CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR4, #22bit 1000 1111 00CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR5, #22bit 1000 1111 01CC CCCC
CCCC CCCC CCCC CCCC

1 − 1

MOVL XAR6, #22bit 0111 0110 10CC CCCC
CCCC CCCC CCCC CCCC

X − 1

MOVL XAR7, #22bit 0111 0110 11CC CCCC
CCCC CCCC CCCC CCCC

X − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers

#22bit 22-bit immediate constant value

Description Load XARn with a 22-bit unsigned constant:

XARn = 0:22bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR4,#VarA ; Initialize XAR4 pointer with the
; 22-bit address of VarA

MOVL XT,loc32

 6-216

MOVL XT,loc32 Load the XT Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVL XT, loc32 1000 0111 LLLL LLLL 1 − 1

Operands T Upper 16 bits of the multiplicand register (XT)

loc32 Addressing mode (see Chapter 5)

Description Load the XT register with the 32-bit content of the location pointed to by the
�loc32� addressing mode:

XT = [loc32];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0

SPM −2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVL XT,@X1 ; XT = X1, ACC = X2*C2 >> 2
QMPYAL P,XT,@C1 ; P = XT*C1
MOVL @X2,XT ; X2 = X1
MOVL XT,@X0 ; XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
QMPYAL P,XT,@C0 ; P = XT*C0
MOVL @X1,XT ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

MOVP T,loc16

6-217

MOVP T,loc16 Load the T Register and Store P in the Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVP T,loc16 0001 0110 LLLL LLLL X − 1

Operands T Upper 16 bits of the multiplicand register (XT)

loc16 Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the
�loc16� addressing mode. Also, the content of the P register, shifted by the
amount specified by the product shift mode (PM) bits, is loaded into the ACC
register:

T = [loc16];
ACC = P << PM;

Flags and
Modes

N After the operation if bit 31 of the ACC register is 1, then the N bit is set;
otherwise, N is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise
Z is cleared.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0

SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

MOVS T,loc16

 6-218

MOVS T,loc16 Load T and Subtract P From the Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVS, T,loc16 0001 0001 LLLL LLLL X Y N+1

Operands T Upper 16 bits of the multiplicand register (XT)

loc16 Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the
�loc16� addressing mode. Also, the content of the P register, shifted by the
amount specified by the product shift mode (PM) bits, is subtracted from the
content of the ACC register:

T = [loc16];
ACC = ACC − P << PM;

Flags and
Modes

N After the operation, if bit 31 of the ACC register is 1, then the N bit is set;
otherwise, N is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise
Z is cleared.

C If the subtraction generates a borrow, the C bit is cleared; otherwise, C is set.

V If an overflow occurs, V is set; otherwise V is not affected

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflows.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs.

MOVS T,loc16

6-219

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2

MOVP T,@X2 ; T = X2

MPYS P,T,@C2 ; P = T*C2, ACC = 0

MOVS T,@X1 ; T = X1, ACC = −X2*C2 >> 2

MPY P,T,@C1 ; P = T*C1

MOV @X2,T ; X2 = X1

MOVA T,@X0 ; T = X0, ACC = −X1*C1 >> 2 − X2*C2 >> 2

MPY P,T,@C0 ; P = T*C0

MOV @X1,T ; X1 = X0

SUBL ACC,P << PM ; ACC = −X0*C0 >> 2 − X1*C1 >> 2 − X2*C2 >> 2

MOVL @Y,ACC ; Store result into Y

MOVU ACC,loc16

 6-220

MOVU ACC,loc16 Load Accumulator With Unsigned Word

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVU ACC,loc16 0000 1110 LLLL LLLL X − 1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Load the low half of the accumulator (AL) with the 16-bit contents of the
addressed location pointed to by the �loc16� addressing mode and fill the
high half of the accumulator (AH) with 0s:

AL = [loc16];
AH = 0x0000;

Flags and
Modes

N Clear flag.

Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow
ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16
ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

MOVU loc16,OVC

6-221

MOVU loc16,OVC Store the Unsigned Overflow Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVU loc16,OVC 0101 0110 0010 1000
0000 0000 LLLL LLLL

1 − 1

Operands loc16 Addressing mode (see Chapter 5)

OVC Overflow counter

Description Store the 6 bits of the overflow counter (OVC) into the lower 6 bits of the
location pointed to by the �loc16� addressing mode and zero the upper 10
bits of the addressed location:

[loc16(15:6)] = 0;
[loc16(5:0)] = OVC;

Flags and
Modes

N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.

Z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOVU *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOVU OVC,*−−SP ; Restore OVC from stack

MOVU OVC,loc16

 6-222

MOVU OVC,loc16 Load Overflow Counter With Unsigned Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVU OVC,loc16 0101 0110 0110 0010
0000 0000 LLLL LLLL

1 − 1

Operands OVC 6-bit overflow counter

Description Load the overflow counter (OVC) with the lower 6 bits of the location pointed
to by the �loc16� addressing mode:

OVC = [loc16(5:0)]

Flags and
Modes

OVC The 6-bit overflow counter is modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOVU *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOVU OVC,*−−SP ; Restore OVC from stack

MOVW DP, #16bit

6-223

MOVW DP, #16bit Load the Entire Data Page

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVW DP, #16bit 0111 0110 0001 1111
CCCC CCCC CCCC CCCC

X − 1

Operands DP Data page register

#16bit 16-bit immediate constant value

Description Load the data page register with a 16-bit constant:

DP(15:0) = 16bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVW DP, #VarA ; Load DP with the data page that
; contains VarA. Assumes VarA is in the
; lower 0x003F FFC0 of memory

MOVW DP, #0F012h ; Load DP with data page number 0xF012

MOVX TL,loc16

 6-224

MOVX TL,loc16 Load Lower Half of XT With Sign Extension

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVX TL,loc16
0101 0110 0010 0001
xxxx xxxx LLLL LLLL 1 − 1

Operands TL Lower 16 bits of the multiplicand register (XT)

loc32 Addressing mode (see Chapter 5)

Description Load the lower 16 bits of the multiplicand register (TL) with the 16-bit
contents of the location pointed to by the �loc16� addressing mode and then
sign extend that value into the upper upper 16 bits of XT:

TL = [loc16];
T = sign extension of TL;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate and keep low 32-bit result: Y32 = M32*X16

MOVX TL,@X16 ; XT = S:X16

IMPYL P,XT,@M32 ; P = XT * M32 (low 32 bits of result)

MOVL @Y32,P ; Store result into Y32

MOVZ ARn, loc16

6-225

MOVZ ARn, loc16 Load Lower Half of XARn and Clear Upper Half

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVZ AR0…5, loc16 0101 1nnn LLLL LLLL X − 1

MOVZ AR6, loc16 1000 1000 LLLL LLLL 1 − 1

MOVZ AR7, loc16 1000 0000 LLLL LLLL 1 − 1

Operands ARn AR0 to AR7, lower 16 bits of auxiliary registers

loc16 Addressing modes (See chapter 5)

Description Load ARn with the contents of the 16-bit location and clear ARnH:

ARn = [loc16];
ARnH = 0;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR7, #ArrayA ; Initialize XAR2 pointer

MOVZ AR0, *+XAR2[0] ; Load 16-bit value pointed to by XAR2

; into AR0. XAR0(31:16) = 0.

MOVZ AR7, *−SP[1] ; Load the first 16-bit value off of the
; stack into AR7. XAR7(31:16) = 0.

MOVZ DP, #10bit

 6-226

MOVZ DP, #10bit Load Data Page and Clear High Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MOVZ DP, #10bit 1011 10CC CCCC CCCC 1 − 1

Operands DP Data page register

#10bit 10-bit immediate constant value

Description Load the data page register with a 10-bit constant and clear the upper 6 bits:

DP(9:0) = 10bit;
DP(15:10) = 0;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVZ DP, #VarA ; Load DP with the data page that contains
; VarA. Assumes VarA is in the lower
; 0x0000 FFC0 of memory

MOVZ DP, #3FFh ; Load DP with page number 0x03FF.

MPY ACC,loc16, #16bit

6-227

MPY ACC,loc16, #16bit 16 X 16-bit Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPY ACC, loc16,#16bit 0011 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands ACC Accumulator register

loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Load the T register with the 16-bit content of the location pointed to by the
�loc16� addressing mode; then, multiply the signed 16-bit content of the T
register by the specified signed 16-bit constant value:

T = [loc16];
ACC = signed T * signed 16bit;

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + X16 * 2000

MPY ACC,@X16,#2000 ; T = X16, ACC = X16 * 2000

ADDL @Y32,ACC ; Y32 = Y32 + ACC

MPY ACC, T, loc16

 6-228

MPY ACC, T, loc16 16 X 16-bit Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPY ACC,T,loc16 0001 0010 LLLL LLLL X − 1

Operands ACC Accumulator register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit
contents of the location pointed to by the �loc16� addressing mode and store
the result in the ACC register:

ACC = signed T * signed [loc16];

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + X16*M16

MOV T,@X16 ; T = X16

MPY ACC,T,@M16 ; ACC = T * M16

ADDL @Y32,ACC ; Y32 = Y32 + ACC

MPY P,loc16,#16bit

6-229

MPY P,loc16,#16bit 16 X 16-Bit Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPY P,loc16,#16bit 1000 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

1 − 1

Operands P Product register

loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Multiply the signed 16-bit contents of the location pointed to by the �loc16�
addressing mode by the 16-bit immediate value and store the 32-bit result in
the P register:

P = signed [loc16] * signed 16bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2),
; C0, C1 and C2 are constants
SPM −2 ; Set product shift to >> 2

MOVB ACC,#0 ; Zero ACC

MPY P,@X2,#C2 ; P = X2*C2

MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1

MPYA P,@X0,#C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = X0*C0

ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2

MOVL @Y,ACC ; Store result into Y

MPY P,T,loc16

 6-230

MPY P,T,loc16 16 X 16 Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPY P,T,loc16 0011 0011 LLLL LLLL X − 1

Operands P Product register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit
contents of the location pointed to by the �loc16� addressing mode and store
the 32-bit result in the P register:

P = signed T * signed [loc16];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0

SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; T = X2
MPYS P,T,@C2 ; P = T*C2, ACC = 0
MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1
MPY P,T,@C1 ; P = T*C1
MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
MPY P,T,@C0 ; P = T*C0
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

MPYA P,loc16,#16bit

6-231

MPYA P,loc16,#16bit 16 X 16-Bit Multiply and Add Previous Product

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYA P,loc16,#16bit 0001 0101 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands P Product register

loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Add the previous product (stored in the P register), shifted as specified by the
product shift mode (PM) bits, to the ACC register. Load the T register with the
content of the location pointed to by the �loc16� addressing mode. Multiply
the signed 16-bit content of the T register by the signed 16-bit constant value
and store the 32-bit result in the P register:

ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed 16bit;

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the
operation overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

MPYA P,loc16,#16bit

 6-232

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2),
; C0, C1 and C2 are constants
SPM −2 ; Set product shift to >> 2

MOVB ACC,#0 ; Zero ACC

MPY P,@X2,#C2 ; P = X2*C2

MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1

MPYA P,@X0,#C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = X0*C0

ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2

MOVL @Y,ACC ; Store result into Y

MPYA P,T,loc16

6-233

MPYA P,T,loc16 16 X 16-bit Multiply and Add Previous Product

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYA P,T,loc16 0001 0111 LLLL LLLL X Y N+1

Operands P Product register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Add the previous product (stored in the P register), shifted as specified by the
product shift mode (PM), to the ACC register. Multiply the signed 16-bit
content of T by the signed 16-bit content of the location pointed to by the
�loc16� addressing mode and store the 32-bit result in the P register:

ACC = ACC + P << PM;
P = signed T * signed [loc16];

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs.

MPYA P,T,loc16

 6-234

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

SPM −2 ; Set product shift to >> 2

MOVP T,@X2 ; ACC = P, T = X2

MPYS P,T,@C2 ; ACC = ACC − P = 0, P = T*C2

MOV T,@X1 ; T = X1

MPYA P,T,@C1 ; ACC = X2*C2>>2, P = T*C1

MOV T,@X0 ; T = X0

MPYA P,T,@C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = T*C0

ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2

MOVL @Y,ACC ; Store result into Y

MPYB ACC,T,#8bit

6-235

MPYB ACC,T,#8bit Multiply by 8-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYB ACC,T,#8bit 0011 0101 CCCC CCCC X − 1

Operands ACC Accumulator register

T Multiplicand register

#8bit 8-bit immediate constant value

Description Multiply the signed 16-bit content of the T register by the unsigned 8-bit
constant value zero extended and store the result in the ACC register:

ACC = signed T * 0:8bit

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + (X16 * 5)

MOV T,@X16 ; T = X16

MPYB ACC,T,#5 ; ACC = T * 5

ADDL @Y32,ACC ; Y32 = Y32 + ACC

MPYB P,T,#8bit

 6-236

MPYB P,T,#8bit Multiply Signed Value by Unsigned 8-bit Constant

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYB P,T,#8bit 0011 0001 CCCC CCCC X − 1

Operands P Product register

T Multiplicand register

#8bit 8-bit immediate constant value

Description Multiply the signed 16-bit content of the T register by the unsigned 8-bit
immediate constant value zero extended and store the 32-bit result in the P
register:

P = signed T * 0:8bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y32 = X16 * 5;

MOV T,@X16 ; T = X16

MPYB P,T,#5 ; P = T * #5

MOVL @Y,P ; Store result into Y32

MPYS P,T,loc16

6-237

MPYS P,T,loc16 16 X 16-bit Multiply and Subtract

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYS P,T,loc16 0001 0011 LLLL LLLL X Y N+1

Operands P Product register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Subtract the previous product (stored in the P register), shifted as specified
by the product shift mode (PM), from the ACC register. In addition, multiply
the signed 16-bit content of the T register by the signed 16-bit constant value
and store the result in the P register:

ACC = ACC − P << PM;
P = signed T * signed [loc16];

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs.

MPYS P,T,loc16

 6-238

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

SPM −2 ; Set product shift to >> 2

MOVP T,@X2 ; ACC = P, T = X2

MPYS P,T,@C2 ; ACC = ACC − P = 0, P = T*C2

MOV T,@X1 ; T = X1

MPYA P,T,@C1 ; ACC = X2*C2>>2, P = T*C1

MOV T,@X0 ; T = X0

MPYA P,T,@C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = T*C0

ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2

MOVL @Y,ACC ; Store result into Y

MPYU P,T,loc16

6-239

MPYU P,T,loc16 Unsigned 16 X 16 Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYU P,T,loc16 0011 0111 LLLL LLLL X − 1

Operands P Product register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit
contents of the location pointed to by the �loc16� addressing mode and store
the 32-bit result in the P register:

P = unsigned T * unsigned [loc16];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned value: Y32 = X16 * M16;

MOV T,@X16 ; T = X16

MPYU P,T,@M16 ; P = T * M16

MOVL @Y,P ; Store result into Y32

MPYU ACC,T,loc16

 6-240

MPYU ACC,T,loc16 16 X 16-bit Unsigned Multiply

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYU ACC,T,loc16 0011 0110 LLLL LLLL X − 1

Operands ACC Accumulator register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the unsigned 16-bit content of the T register by the unsigned 16-bit
content of the location pointed to by the �loc16� addressing mode and store
the 32-bit results in the ACC register:

ACC = unsigned T * unsigned [loc16];

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned using 16-bit multiply:
; Y32 = Y32 + X16*M16

MOV T,@X16 ; T = X16

MPYU ACC,T,@M16 ; ACC = T * M16

ADDL @Y32,ACC ; Y32 = Y32 + ACC

MPYXU ACC, T, loc16

6-241

MPYXU ACC, T, loc16 Multiply Signed Value by Unsigned Value

SYNTAX OPTIONS OBJMODE RPT CYC

MPYXU ACC, T, loc16 0011 0000 LLLL LLLL X − 1

Operands ACC Accumulator register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the unsigned 16-bit
content of the location pointed to by the �loc16� addressing mode and store
the result in the ACC register:

ACC = signed T * unsigned [loc16];

Flags and
Modes

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + (signed) X16 * (unsigned) M16

MOV T,@X16 ; T = X16

MPYXU ACC,T,@M16 ; ACC = T * M16

ADDL @Y32,ACC ; Y32 = Y32 + ACC

MPYXU P,T,loc16

 6-242

MPYXU P,T,loc16 Multiply Signed Value by Unsigned Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

MPYXU P,T,loc16 0011 0010 LLLL LLLL X − 1

Operands P Product register

T Multiplicand register

loc16 Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit
contents of the location pointed to by the �loc16� addressing mode and store
the 32-bit result in the P register:

P = signed T * unsigned [loc16];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate ”Y32 = X32 * M32” by parts using 16-bit multiply:

MOV T,@X32+0 ; T = unsigned low X32
MPYU ACC,T,@M32+0 ; ACC = T * unsigned low M32
MOV @Y32+0,AL ; Store low result into Y32
MOVU ACC,@AH ; Logical shift right ACC by 16
MOV T,@X32+1 ; T = signed high X32
MPYXU P,T,@M32+0 ; ACC = T * low unsigned M32
MOVA T,@M32+1 ; T = signed high M32, ACC += P
MPYXU P,T,@X32+0 ; ACC = T * low unsigned X32
ADDL ACC,@P ; Add P to ACC
MOV @Y32+1,AL ; Store high result into Y32

NASP

6-243

NASP Unalign Stack Pointer

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NASP 0111 0110 0001 0111 X − 1

Operands None

Description If the SPA bit is 1, the NASP instruction decrements the stack pointer (SP) by
1 and then clears the SPA status bit. This undoes a stack pointer alignment
performed earlier by the ASP instruction. If the SPA bit is 0, then the NASP
instruction performs no operation.

if(SPA = 1)
 {
 SP = SP − 1;
 SPA = 0;
 }

Flags and
Modes

PSA If (SPA = 1), then SPA is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Alignment of stack pointer in interrupt service routine:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
 .
 .
INTxService:
 ASP ; Align stack pointer
 .
 .
 .
 NASP ; Re−align stack pointer
 IRET ; Return from interrupt.

NEG ACC

 6-244

NEG ACC Negate Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NEG ACC 1111 1111 0101 0100 X − 1

Operands ACC Accumulator register

Description Negate the contents of the ACC register:

if(ACC = 0x8000 0000)
 {
 V = 1;
 if(OVM = 1)
 ACC = 0x7FFF FFFF;
 else
 ACC = 0x8000 0000;
 }
else
 ACC = −ACC;
if(ACC = 0x0000 0000)
 C = 1;
else
 C = 0;

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C If (ACC = 0), set C; otherwise, clear C.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value and V is set. Otherwise, V is not affected.

OVM If (ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value, and the ACC value after the operation depends on the state
of OVM: If OVM is cleared, ACC will be filled with 0x8000 0000. If OVM is set
ACC will be saturated to 0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Negate contents of VarA, make sure value is saturated:

 MOVL ACC,@VarA ; Load ACC with contents of VarA

 SETC OVM ; Turn overflow mode on

 NEG ACC ; Negate ACC and saturate

 MOVL @VarA,ACC ; Store result into VarA

NEG AX

6-245

NEG AX Negate AX Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NEG AX 1111 1111 0101 110A X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

Description Replace the contents of the specified AX register with the negative of AX:

if(AX = 0x8000)
{
AX = 0x8000;
V flag = 1;
}

else
AX = −AX;

if(AX = 0x0000)
C flag = 1;

else
C flag = 0;

Flags and
Modes

N After the operation, if bit 15 of AX is 1, then the negative flag bit is set;
otherwise, it is cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

C If AX is 0, C is set; otherwise, it is cleared.

V If AX is 0x8000 at the start of the operation, then this is considered an overflow
and V is set. Otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Take the absolute value of VarA:

 MOV AL,@VarA ; Load AL with contents of VarA

 NEG AL ; If Al = 8000h, then V = 1
 SB NoOverflow,NOV ; Branch and save −AL if no overflow
 MOV @VarA,0x7FFFh ; Save 7FFF if overflow
NoOverflow:
 MOV @VarA,AL ; Save NEG AL if no overflow

NEG64 ACC:P

 6-246

NEG64 ACC:P Negate Accumulator Register and Product Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NEG64 ACC:P 0101 0110 0101 1000 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

Description Negate the 64-bit content of the combined ACC:P registers:

if(ACC:P = 0x8000 0000 0000 0000)
 {
 V = 1;
 if(OVM = 1)
 ACC:P = 0x7FFF FFFF FFFF FFFF;
 else
 ACC:P = 0x8000 0000 0000 0000;
 }
else
 ACC:P = −ACC:P;
if(ACC:P = 0x0000 0000 0000 0000)
 C = 1;
else
 C = 0;

Flags and
Mode

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the
N bit is set; otherwise N is cleared.

Z After the operation, the Z flag is set if the combined 64-bit value of the ACC:P
is zero; otherwise, Z is cleared.

C If (ACC:P= = 0) then the C bit is set; otherwise C is cleared.

V if(ACC:P = 0x8000 0000 0000 0000) then the V flag is set; otherwise, V is not
modified.

OVM If at the start of the operation, ACC:P = 0x8000 0000 0000 0000, then this is
considered an overflow value and the ACC:P value after the operation
depends on OVM. If (OVM = 1) ACC:P is filled with its greatest positive
number (0x7FFF FFFF FFFF FFFF). If (OVM = 0) then ACC:P is not
modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

NEG64 ACC:P

6-247

Example ; Negate the contents of the 64-bit Var64 and saturate:

MOVL ACC,@Var64+2 ; Load ACC with high 32-bits of Var64

MOVL P,@Var64+0 ; Load P with low 32-bits of Var64

SETC OVM ; Enable overflow mode (saturate)

NEG64 ACC:P ; Negate ACC:P with saturation

MOVL @Var64+2,ACC ; Store high 32-bit result into Var64

MOVL @Var64+0,P ; Store low 32-bit result into Var64

NEGTC ACC

 6-248

NEGTC ACC If TC is Equivalent to 1, Negate ACC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NEGTC ACC 0101 0110 0011 0010 1 − 1

Operands ACC Accumulator register

Description Based on the state of the test control (TC) bit, conditionally replace the
content of the ACC register with its negative:

if(TC = 1)
 {
 if(ACC = 0x8000 0000)
 {
 V = 1;
 if(OVM = 1)
 ACC = 0x7FFF FFFF;
 else
 ACC = 0x8000 0000
 }
 else
 ACC = −ACC;
 if(ACC = 0x0000 0000)
 C = 1;
 else
 C = 0;
 }

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C If (TC = 1 AND ACC = 0) set C; if (TC = 1 AND ACC != 0) clear C; otherwise C
is not modified.

V If (TC = 1 AND ACC = 0x8000 0000) at the start of the operation, this is
considered an overflow value and V is set. Otherwise, V is not affected.

TC The state of the TC bit is used as a test condition for the operation.

OVM If at the start of the operation, ACC = 0x8000 0000, then this is considered an
overflow value and the ACC value after the operation depends on OVM. If
OVM is cleared and TC = 1, ACC will be filled with 0x8000 0000. If OVM is set
and TC = 1, ACC will be saturated to 0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

NEGTC ACC

6-249

Example ; Calculate signed: Quot16 = Num16/Den16, Rem16 = Num16%Den16

 CLRC TC ; Clear TC flag, used as sign flag

 MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOV T,@AH ; Temp save Den16 in T register

 MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOVU ACC,@AH ; AH = 0, AL = Num16

 RPT #15 ; Repeat operation 16 times

||SUBCU @T ; Conditional subtract with Den16

 MOV @Rem16,AH ; Store remainder in Rem16

 MOV ACC,@AL << 16 ; AH = Quot16, AL = 0

 NEGTC ACC ; Negate if TC = 1

 MOV @Quot16,AH ; Store quotient in Quot16

NOP {*ind}{ARPn}

 6-250

NOP {*ind}{ARPn} No Operation With Optional Indirect Address Modification

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NOP {*ind}{,ARPn} 0111 0111 LLLL LLLL X Y N+1

Operands {*ind} Indirect address mode (see chapter 5)

ARPn Auxiliary register pointer (ARP0 to ARP7)

Description Modify the indirect address operand as specified and change the auxiliary
register pointer (ARP) to the given auxiliary register. If no operands are
given, then do nothing.

Flags and
Modes

None

Repeat This instruction is repeatable. If this instruction follows the RPT instruction, it
will execute N+1 times.

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];
; This example only works for code located in upper 64K
; of program space:

 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
 MOV @AR0,#(N−1) ; Repeat loop N times
 NOP *,ARP2 ; Point to XAR2 (ARP = 2)
 SETC AMODE ; Full C2xLP address mode compatible
Loop:
 MOVL ACC,* ; ACC = Array1[i]
 NOP *++,ARP3 ; Increment XAR2 and point to XAR3
 RPT #19 ; Do nothing for 20 cycles
||NOP
 MOVL *++,ACC,ARP0 ; Array2[i] = ACC, point to XAR0
 XBANZ Loop,*−−,ARP2 ; Loop if AR[ARP] != 0, AR[ARP]−−,

; point to XAR2

NORM ACC, *ind

6-251

NORM ACC, *ind Normalize ACC and Modify Selected Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NORM ACC, * 0101 0110 0010 0100 1 Y N+4

NORM ACC, *++ 0101 0110 0101 1010 1 Y N+4

NORM ACC, *−− 0101 0110 0010 0000 1 Y N+4

NORM ACC, *0++ 0101 0110 0111 0111 1 Y N+4

NORM ACC, *0−− 0101 0110 0011 0000 1 Y N+4

Operands ACC Accumulator register

*ind *, *++, *−−, *0++, *0−− indirect addressing modes (see Chapter 5)

Description Normalize the signed content of the ACC register and modify, as specified by
the indirect addressing mode, the auxiliary register (XAR0 to XAR7) pointed
to by the auxiliary register pointer (ARP):

Note: The NORM instruction normalizes a signed number in the ACC register by finding the
magnitude of the number. An XOR operation is performed on ACC bits 31 and 30. If the
bits are the same, then the content of the ACC register is logically shifted left by 1 to
eliminate the extra sign bit and the selected pointer is modified. If the bits are different,
the ACC is not shifted and the selected pointer is not modified. The selected pointer
does not access any memory location.

Flags and
Modes

Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

TC If the operation set TC, no normalization was needed (ACC did not need to
be modified). If the operation cleared TC, bits 31 and 30 were the same and,
as a result, the ACC register was logically shifted left by 1.

ARP Auxiliary register pointer selects which pointer to modify as part of the
operation (XAR0 to XAR7).

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the NORM instruction will be executed N+1 times. The state of the Z, N, and
TC flags will reflect the final result. Note: If you only want the NORM
instruction to execute until normalization is done, you can create a loop that
checks the value of the TC bit. When TC = 1, normalization is complete.

NORM ACC, *ind

 6-252

Example ; Normalize the contents of VarA,
; XAR2 will contain shift value at the end of the operation:

 MOVL ACC,@VarA ; ACC = VarA

 MOVB XAR2,#0 ; Initialize XAR2 to zero

 NOP *,ARP2 ; Set ARP pointer to point to XAR2

 SBF Skip,EQ ; Skip if ACC value is zero

 RPT #31 ; Repeat next operation 32 times

||NORM ACC,*++ ; Normalize contents of ACC

Skip:

NORM ACC,XARn++/−−

6-253

NORM ACC,XARn++/−− Normalize ACC and Modify Selected Auxiliary Register.

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NORM ACC,XARn++ 1111 1111 0111 1nnn X Y N+4

NORM ACC,XARn−− 1111 1111 0111 0nnn X Y N+4

Operands ACC Accumulator register

XARn
++/−−

XAR0 to XAR7, auxiliary registers post incremented or decremented

Description Normalize the signed content of the ACC register and modify the specified
auxiliary register (XAR0 to XAR7):

if(ACC != 0x0000 0000)
 {
 if((ACC(31) XOR ACC(30)) = 0)
 {
 ACC = ACC << 1, TC = 0;
 if(XARn++ addressing mode) XARn += 1;
 if(XARn−− addressing mode) XARn −= 1;
 }
 else
 TC = 1;
 }
else
 TC = 1;

Note: The NORM instruction normalizes a signed number in the ACC register by finding the
magnitude of the number. An XOR operation is performed on ACC bits 31 and 30. If the
bits are the same, then the content of the ACC register is logically shifted left by 1 to
eliminate the extra sign bit and the selected pointer is modified. If the bits are different,
the ACC is not shifted and the selected pointer is not modified. The selected pointer
does not access any memory location.

Flags and
Modes

Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

TC If the operation set TC, no normalization was needed (ACC did not need to
be modified). If the operation cleared TC, bits 31 and 30 were the same and,
as a result, the ACC register was logically shifted left by 1.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the NORM instruction will be executed N+1 times. The state of the Z, N, and
TC flags will reflect the final result. Note: If you only want the NORM
instruction to execute until normalization is done, you can create a loop that
checks the value of the TC bit. When TC = 1, normalization is complete.

NORM ACC,XARn++/−−

 6-254

Example ; Normalize the contents of VarA,
; XAR2 will contain shift value at the end of the operation:

 MOVL ACC,@VarA ; ACC = VarA

 MOVB XAR2,#0 ; Initialize XAR2 to zero

 SBF Skip,EQ ; Skip if ACC value is zero

 RPT #31 ; Repeat next operation 32 times

||NORM ACC,XAR2++ ; Normalize contents of ACC

Skip:

NOT ACC

6-255

NOT ACC Complement Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NOT ACC 1111 1111 0101 0101 X − 1

Operands ACC Accumulator register

Description The content of the ACC register is replaced with its complement:

ACC = ACC XOR 0xFFFFFFFF;

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Complement the contents of VarA:

 MOVL ACC,@VarA ; ACC = VarA

 NOT ACC ; Complement ACC contents

 MOVL @VarA,ACC ; Store result into VarA

NOT AX

 6-256

NOT AX Complement AX Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

NOT AX 1111 1111 0101 111A X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

Description Replace the contents of the specified AX register (AH or AL) with its
complement:

AX = AX XOR 0xFFFF;

Flags and
Modes

N After the operation, if bit 15 of AX is 1 then the negative flag bit is set; otherwise
it is cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Complement the contents of VarA:

MOV AL,@VarA ; Load AL with contents of VarA

NOT AL ; Complement contents of AL
MOV @VarA,AL ; Store result in VarA

OR ACC, loc16

6-257

OR ACC, loc16 Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR ACC, loc16 1010 1111 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise OR operation on the ACC register with the zero-extended
content of the location pointed to by the �loc16� address mode. The result is
stored in the ACC register:

ACC = ACC OR 0:[loc16];

Flags and
Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then
the negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This operation is repeatable. If the operation follows a RPT instruction, then
the OR instruction will be executed N+1 times. The state of the Z and N flags
will reflect the final result.

Example ; Calculate the 32-bit value: VarA = VarA OR 0:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA

OR ACC,@VarB ; OR ACC with contents of 0:VarB

MOVL @VarA,ACC ; Store result in VarA

OR ACC,#16bit << #0..16

 6-258

OR ACC,#16bit << #0..16 Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR ACC,#16bit << #0..15 0011 1110 0001 SHFT
CCCC CCCC CCCC CCCC

1 − 1

OR ACC,#16bit << #16 0101 0110 0100 1010
CCCC CCCC CCCC CCCC

1 − 1

Operands ACC Accumulator register
#16bit 16-bit immediate constant value
#0..16 Shift value (default is �<< #0� if no value specified)

Description Perform a bitwise OR operation on the ACC register with the given 16-bit
unsigned constant value left shifted as specified. The value is zero extended
and lower order bits are zero filled before the OR operation. The result is
stored in the ACC register:
ACC = ACC OR (0:16bit << shift value);

Flags and
Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then
the negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA OR 0x08000000
MOVL ACC,@VarA ; Load ACC with contents of VarA

OR ACC,#0x8000 << 12 ; OR ACC with 0x08000000

MOVL @VarA,ACC ; Store result in VarA

OR AX, loc16

6-259

OR AX, loc16 Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR AX, loc16 1100 101A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise OR operation on the specified AX register with the
contents of the location pointed to by the �loc16� addressing mode. The
result is stored in AX:

AX = AX OR [loc16];

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; OR the contents of VarA and VarB and store in VarC:

MOV AL,@VarA ; Load AL with contents of VarA

OR AL,@VarB ; OR AL with contents of VarB
MOV @VarC,AL ; Store result in VarC

OR IER,#16bit

 6-260

OR IER,#16bit Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR IER,#16bit 0111 0110 0010 0011
CCCC CCCC CCCC CCCC

X − 2

Operands IER Interrupt enable register

#16bit-
Mask

16-bit immediate constant value

Description Enable specific interrupts by performing a bitwise OR operation with the IER
register and the 16-bit immediate value. The result is stored in the IER
register:

IER = IER OR #16bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Enable INT1 and INT6 only. Do not modify state of other
; interrupt’s enable:

 OR IER,#0x0061 ; Enable INT1 and INT6

OR IFR,#16bit

6-261

OR IFR,#16bit Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR IFR,#16bit 0111 0110 0010 0111
CCCC CCCC CCCC CCCC

X − 2

Operands IFR Interrupt flag register
#16bit 16-bit immediate constant value

Description Enable specific interrupts by performing a bitwise OR operation with the IFR
register and the 16-bit immediate value. The result of the OR operation is
stored in the IFR register.

IFR = IFR OR #16bit;

Note: Interrupt hardware has priority over CPU instruction operation in cases where the
interrupt flag is being simultaneously modified by the hardware and the instruction.

This instruction should not be used with interrupts 1−12 when the peripheral
interrupt expansion (PIE) block is enabled.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT in-
struction, it resets the repeat counter (RPTC) and executes only once.

Example ; Trigger INT1 and INT6 only. Do not modify state of other
; interrupt’s flags:

 OR IFR,#0x0061 ; Trigger INT1 and INT6

OR loc16,#16bit

 6-262

OR loc16,#16bit Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR loc16,#16bit 0001 1010 LLLL LLLL

CCCC CCCC CCCC CCCC

X − 1

Operands loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Perform a bitwise OR operation on the content of the location pointed to by
the �loc16� addressing mode and the 16-bit immediate constant value. The
result is stored in the location pointed to by �loc16�:

[loc16] = [loc16] OR 16bit;

Smart Encoding:
If loc16 = AH or AL and #16bit is an 8-bit number, then the assembler will
encode this instruction as ORB AX, #8bit to improve efficiency. To override
this encoding, use the ORW AX, #16bit instruction alias.

Flags and
Modes

N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.

Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set Bits 4 and 7 of VarA:
; VarA = VarA OR #(1 << 4 | 1 << 7)

OR @VarA,#(1 << 4 | 1 << 7) ; Set bits 4 and 7 of VarA

OR loc16, AX

6-263

OR loc16, AX Bitwise OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OR loc16, AX 1001 100A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Aaccumulator high (AH) or accumulator low (AL) register

Description Perform a bitwise OR operation on the contents of location pointed to by the
�loc16� addressing mode with the specified AX register. The result is stored
in the addressed location specified by �loc16�:

[loc16] = [loc16] OR AX;

This instruction performs a read-modify-write operation.

Flags and
Modes

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1,
then the negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; OR the contents of VarA with VarB and store in VarB:

MOV AL,@VarA ; Load AL with contents of VarA

OR @VarB,AL ; VarB = VarB OR AL

ORB AX,#8bit

 6-264

ORB AX,#8bit Bitwise OR 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ORB AX, #8bit 0101 000A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit 8-bit immediate constant value

Description Perform a bitwise OR operation on the specified AX register with the 8-bit
unsigned immediate constant zero extended. The result is stored in AX:

AX = AX OR 0x00:8bit;

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set bit 7 of VarA and store result in VarB:

MOV AL,@VarA ; Load AL with contents of VarA

ORB AL,#0x80 ; OR contents of AL with 0x0080
MOV @VarB,AL ; Store result in VarB

OUT *(PA),loc16

6-265

OUT *(PA),loc16 Output Data to Port

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

OUT *(PA),loc16 1011 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

1 − 4

Operands *(PA) Immediate I/O space memory address

loc16 Addressing mode (see Chapter 5)

Description Store the 16-bit value from the location pointed to by the �loc16� addressing
mode into the I/O space location pointed to by the *(PA) operand):

IOspace[0x0000PA] = [loc16];

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external
interface (XINTF), if available on a particular device, the I/O strobe signal
(XISn) is toggled during the operation. The I/O address appears on the lower
16 XINTF address lines (XA(15:0)) and the upper address lines are zeroed.
The data appears on the lower 16 data lines (XD(15:0).

Note: The UOUT operation is not pipeline protected. Hence, if an IN instruction immediately
follows a UOUT instruction, the IN will occur before the UOUT. To be certain of the
sequence of operation, use the OUT instruction, which is pipeline protected.

Note: The UOUT operation is not pipeline protected. Therefore, if an IN instruction
immediately follows a UOUT instruction, the IN will occur before the UOUT. To be
certain of the sequence of operation, use the OUT instruction, which is pipeline
protected.
I/O space may not be implemented on all C28x devices. See the data sheet for your
particular device for details.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)
; IORegC = 0x0000;
IORegA .set 0x0300 ; Define IORegA address
IORegB .set 0x0301 ; Define IORegB address
IORegC .set 0x0302 ; Define IORegC address
 MOV @AL,#0 ; AL = 0
 UOUT *(IORegA),@AL ; IOspace[IORegA] = AL
 MOV @AL,#0x0400 ; AL = 0x0400
 UOUT *(IORegB),@AL ; IOspace[IORegB] = AL
 OUT *(IORegC),@VarA ; IOspace[IORegC] = VarA

OUT *(PA),loc16

 6-266

 IN @AL,*(IORegC) ; AL = IOspace[IORegC]
 CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)
 SB $10,NEQ ; Branch if not equal
 MOV @AL,#0 ; AL = 0
 UOUT *(IORegC),@AL ; IOspace[IORegC] = AL
$10:

POP ACC

6-267

POP ACC Pop Top of Stack to Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP ACC 0001 1110 1011 1110 X − 1

Operands ACC Accumulator

Description Predecrement SP by 2. Load ACC with the 32-bit value pointed to by SP:

SP −= 2;
 ACC = [SP];

Flags and
Modes

N The load to ACC is tested for a negative condition. Bit-31 of the ACC register
is the sign bit, 0 for positive, 1 for negative. The negative flag bit is set if the
operation on the ACC register generates a negative value, otherwise it is
cleared.

Z The load to ACC is tested for a zero condition. The bit is set if the result of the
operation on the ACC register generates a 0 value, otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP ARn:ARm

 6-268

POP ARn:ARm Pop Top of Stack to 16-bit Auxiliary Registers

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP AR1:AR0 0111 0110 0000 0111 X − 1

POP AR3:AR2 0111 0110 0000 0101 X − 1

POP AR5:AR4 0111 0110 0000 0110 X − 1

Operands ARn:
ARm

AR1:AR0 or AR3:AR2 or AR5:AR4 auxiliary registers

Description AR1:AR0 or AR3:AR2 or AR5:AR4 Predecrement SP by 2. Load the
contents of two 16-bit auxiliary registers (ARn and ARm)with the value
pointed to by SP and SP+1.

POP AR1:AR0
SP −= 2;
AR0 = [SP];
AR1 = [SP+1];
AR1H:AR0H = unchanged;

POP AR3:AR2
SP −= 2;
AR2 = [SP];
AR3 = [SP+1];
AR3H:AR2H = unchanged;

POP AR5:AR4
SP −= 2;
AR4 = [SP];
AR5 = [SP+1];
AR5H:AR4H = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP AR1H:AR0H

6-269

POP AR1H:AR0H Pop Top of Stack to Upper Half of Auxiliary Registers

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP AR1H:AR0H 0000 0000 0000 0011 X − 1

Operands AR1H:
AR0H

Upper 16-bits of XAR1 and XAR0 auxiliary registers

Description Predecrement SP by 2. Load the contents of AR0H with the value pointed to
by SP and AR1H with the value pointed to by SP+1. The lower 16 bits of the
auxiliary registers (AR0 and AR1) are left unchanged.

SP −= 2;
AR0H = [SP];
AR1H = [SP+1];
AR1:AR0 = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example .

.

.

POP XT

POP XAR7

POP XAR6

POP XAR5

POP XAR4

POP XAR3

POP XAR2

POP AR1H:AR0H

IRET

; Full context restore for an

; interrupt or trap function

; 32-bit XT restore

; 32-bit XAR7 restore

; 32-bit XAR6 restore

; 32-bit XAR5 restore

; 32-bit XAR4 restore

; 32-bit XAR5 restore

; 32-bit XAR2 restore

; 16-bit AR1H and 16-bit AR0H restore

POP DBGIER

 6-270

POP DBGIER Pop Top of Stack to DBGIER

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP DBGIER 0111 0110 0001 0010 X − 5

Operands DBGIER Debug interrupt-enable register

Description Predecrement SP by 1. Load the contents of DBGIER with the value
pointed to by SP:

SP −= 1;
DBGIER = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP DP

6-271

POP DP Pop Top of Stack to the Data Page

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP DP 0111 0110 0000 0011 X − 1

Operands DP Data-page register

Description Predecrement SP by 1. Load the contents of DP with the value pointed to by
SP:

SP −= 1;
DP = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP DP:ST1

 6-272

POP DP:ST1 Pop Top of Stack to DP and ST1

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP DP:ST1 0111 0110 0000 0001 X − 5

Operands DP:S
T1

data page register and status register 1

Description Predecrement SP by 2. Load ST1 with the value pointed to by SP and load DP
with the value pointed to by SP+1:

SP −= 2;
ST1 = [SP];
DP = [SP+1];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP IFR

6-273

POP IFR Pop Top of Stack to IFR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP IFR 0000 0000 0000 0010 X − 5

Operands IFR Interrupt flag register

Description Predecrement SP by 1. Load the contents of IFR with the value pointed to by
SP:

SP −= 1;
IFR = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP loc16

 6-274

POP loc16 Pop Top of Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP loc16 0010 1010 LLLL LLLL X − 2

Operands loc16 Addressing mode (See Chapter 5)

Description Predecrement SP by 1. Load the contents of loc16 with the 16-bit value
pointed to by SP.

SP -= 1;
 [loc16] = [SP];

Flags and
Modes

N If (loc16 = @AX), then the load to AX is tested for a negative condition. Bit-15
of the AX register is the sign bit, 0 for positive, 1 for negative. The negative
flag bit is set if the operation on the AX register generates a negative value,
otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is
set if the result of the operation on the AX register generates a 0 value,
otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example POP @T ; Predecrement SP by 1. Load
; XT(31:15) with the
; contents of the location pointed to
; by SP. TL is unchanged.

POP @AL ; Predecrement SP by 1. Load AL with
; the contents of the location pointed
; to by SP. AH is unchanged.

POP @AR4 ; Predecrement SP by 1. Load AR4 with
; the contents of the location pointed
; to by SP. AR4H is unchanged.

POP *XAR4++ ; Predecrement SP by 1. Load the
; 16-bit location pointed to by XAR4
; with the contents of the location
; pointed to by SP.

Post-increment
; XAR4 by 1

POP P

6-275

POP P Pop top of Stack to P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP P 0111 0110 0001 0001 X − 1

Operands P Product register

Description Predecrement SP by 2. Load P with the 32-bit value pointed to by SP:

SP −= 2;
P = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP RPC

 6-276

POP RPC Pop RPC Register From Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP RPC 0000 0000 0000 0111 X − 3

Operands RPC Return program counter register

Description Predecrement SP by 2. Load the contents of RPC with the value pointed to
by SP:

SP −= 2;
RPC = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP ST0

6-277

POP ST0 Pop Top of Stack to ST0

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP ST0 0111 0110 0001 0011 X − 1

Operands ST0 status register 0

Description Predecrement SP by 1. Load the contents of ST0 with the value pointed to by
SP:

SP −= 1;
ST0 = [SP];

Flags and
Modes

c The bit value of each flag and mode listed is replaced by the value popped off
of the stack

N
V
Z
TC
SXM
OVC
PM

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP ST1

 6-278

POP ST1 Pop Top of Stack to ST1

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP ST1 0111 0110 0000 0000 X − 5

Operands ST1 Status register 1

Description Predecrement SP by 1. Load the contents of ST0 with the value pointed to by
SP:

SP −= 1;
ST1 = [SP];

Flags and
Modes

DBGM The bit values for each flag and mode listed is replaced by the value popped
off of the stack

INTM
VMAP
SPA
PAGE0
AMODE
ARP
EAL-
LOW
OBJ-
MODE
XF

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP T:ST0

6-279

POP T:ST0 Pop Top of Stack to T and ST0

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP T:ST0 0111 0110 0001 0101 X − 1

Operands T:ST0 The upper 16-bits of the multiplicand register and status register 0

Description Predecrement SP by 2. Load ST0 with the value pointed to by SP and load T
with the value pointed to by SP+1. The low 16 bits of the XT Register (TL) are
left unchanged:

SP −= 2;
T = [SP];
ST0 = [SP+1];
TL = unchanged;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

POP XARn

 6-280

POP XARn Pop Top of Stack to 32-bit Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP XAR0 0011 1010 1011 1110 1 − 1

POP XAR1 1011 0010 1011 1110 1 − 1

POP XAR2 1010 1010 1011 1110 1 − 1

POP XAR3 1010 0010 1011 1110 1 − 1

POP XAR4 1010 1000 1011 1110 1 − 1

POP XAR5 1010 0000 1011 1110 1 − 1

POP XAR6 1100 0010 1011 1110 X − 1

POP XAR7 1100 0011 1011 1110 X − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers

Description Predecrement SP by 2. Load XARn with the 32-bit value pointed to by SP:

SP −= 2;
XARn = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example .

.

.

; Full context restore for an

; interrupt or trap function

POP XT

POP XAR7

POP XAR6

POP XAR5

POP XAR4

POP XAR3

POP XAR2

POP AR1H:AR0H

IRET

; 32-bit XT restore

; 32-bit XAR7 restore

; 32-bit XAR6 restore

; 32-bit XAR5 restore

; 32-bit XAR4 restore

; 32-bit XAR3 restore

; 32-bit XAR2 restore

; 16-bit AR1H and 16-bit AR0H restore

POP XT

6-281

POP XT Pop Top of Stack to XT

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

POP XT 1000 0111 1011 1110 X − 1

Operands XT Multiplicand register

Description Predecrement SP by 2. Load XT with the 32-bit value pointed to by SP:

SP −= 2;
XT = [SP];

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PREAD loc16,*XAR7

 6-282

PREAD loc16,*XAR7 Read From Program Memory

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PREAD loc16,*XAR7 0010 0100 LLLL LLLL X Y N+2

Operands loc16 Addressing mode (see Chapter 5)
*XAR7 Indirect program−memory addressing using auxiliary register XAR7, can

access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Load the data memory−location pointed to by the �loc16� addressing mode
with the 16-bit content of the program−memory location pointed to by
�*XAR7�:

[loc16] = Prog[*XAR7];

On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the �*XAR7� addressing mode can be used
to access data space variables that fall within the program space address
range.

With some addressing mode combinations, you can get conflicting
references. In such cases, the C28x will give the �loc16/loc32� field priority
on changes to XAR7. For example:

PREAD *−−XAR7,*XAR7 ; *−−XAR7 given priority
PREAD *XAR7++,*XAR7 ; *XAR7++ given priority

Flags and
Modes

N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.

Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is
cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*XAR7�
program−memory address is copied to an internal shadow register and the
address is post−incremented by 1 during each repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]
; // Located in program space
; int16 Array [N]
; // Located in data space
; for(i=0; i N; i++)
; Array2[i] = Array1[i];

 MOVL XAR7,#Array1 ; XAR7 = pointer to Array1

PREAD loc16,*XAR7

6-283

 MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||PREAD *XAR2++,*XAR7 ; Array2[i] = Array1[i],

; i++

PUSH ACC

 6-284

PUSH ACC Push Accumulator Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH ACC 0001 1110 1011 1101 X − 2
Note: This instruction is an alieas for the MOV*SP++, ACC instruction.

Operands ACC Accumulator register

Description Push the 32-bit contents of ACC onto the stack pointed to by SP.
Post-increment SP by 2:

[SP] = ACC;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR4, #VarA

MOVL ACC, *+XAR4[0]

PUSH ACC

; Initialize XAR4 pointer with the

; 22-bit address of VarA

; Load the 32-bit contents of VarA

; into ACC

; Push the 32-bit ACC into the

; location pointed to by SP.

; Post-increment SP by 2

PUSH ARn:ARm

6-285

PUSH ARn:ARm Push 16-bit Auxiliary REgisters Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH AR1:AR0 0111 0110 0000 1101 X − 1

PUSH AR3:AR2 0111 0110 0000 1111 X − 1

PUSH AR5:AR4 0111 0110 0000 1100 X − 1

Operands ARn:
ARm

AR1:AR0 or AR3:AR2 or AR5:AR4 auxiliary registers

Description Push the contents of two 16-bit auxiliary registers (ARn and ARm) onto the
stack pointed to by SP.
Post-increment SP by 2:

PUSH AR1:AR0
 [SP] = AR0;
 [SP+1] = AR1;
 SP += 2;

PUSH AR3:AR2
 [SP] = AR2;
 [SP+1] = AR3;
 SP += 2;

PUSH AR5:AR4
 [SP] = AR4;
 [SP+1] = AR5;
 SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH AR1H:AR0H

 6-286

PUSH AR1H:AR0H Push AR1H and Ar0H Registers on Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH AR1H:AR0H 0000 0000 0000 0101 X − 1

Operands AR1H:
AR0H

Upper 16-bits of XAR1 and XAR0 auxiliary registers

Description Push the contents of AR0H followed by the contents of AR1H onto the stack
pointed to by SP.
Post-increment SP by 2:

[SP] = AR0H
[SP+1] = AR1H;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example IntX:

PUSH AR1H:AR0H

PUSH XAR2

PUSH XAR3

PUSH XAR4

PUSH XAR5

PUSH XAR6

PUSH XAR7

PUSH XT

 .
 .
 .

; Full context save code for an

; interrupt or trap function

; 16-bit AR1H and 16-bit AR0H store

; 32-bit store of XAR2

; 32-bit store of XAR3

; 32-bit store of XAR4

; 32-bit store of XAR5

; 32-bit store of XAR6

; 32-bit store of XAR7

; 32-bit store of XT

PUSH DBGIER

6-287

PUSH DBGIER Push DBGIER Register Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH DBGIER 0111 0110 0000 1110 X − 1

Operands DBGIER Debug interrupt enable register

Description Push the 16-bit contents of DBGIER onto the stack pointed to by SP.
Post-increment SP by 1:

[SP] = DBGIER;
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH DP

 6-288

PUSH DP Push DP Register Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH DP 0111 0110 0000 1011 X − 1

Operands DP Data-page register

Description Push the 16-bit contents of DP onto the stack pointed to by SP.
Post-increment SP by 1:

[SP] = DP;
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH DP:ST1

6-289

PUSH DP:ST1 Push DP and ST1 Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH DP:ST1 0111 0110 0000 1001 X − 1

Operands DP:ST1 Data-page register and status register 1

Description Push the 16- bit contents of ST1 followed by the 16-bit contents of DP onto
the stack pointed to by SP.
Post-increment SP by 2:

[SP] = ST1;
[SP+1] = DP;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH IFR

 6-290

PUSH IFR Push IFR Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH IFR 0111 0110 0000 1010 X − 1

Operands IFR Interrupt flag register

Description Push the 16-bit contents of IFR onto the stack pointed to by SP.
Post-increment SP by 1:

[SP] = IFR;
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH loc16

6-291

PUSH loc16 Push 16-bit Value on Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH loc16 0010 0010 LLLL LLLL X − 2

Operands loc16 Addressing mode (see Chapter 5)

Description Push a 16-bit value pointed to by the �loc16� operand on the stack pointed to
by SP.
Post-increment SP by 1:

[SP] = [loc16];
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example PUSH @T ; Push the contents of XT(31:15) into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH @AL ; Push the contents of AL onto into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH @AR4 ; Push the lower 16-bits of XAR4 into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH *XAR4++ ; Push the value pointed to by XAR4
; into the location pointed to
; by SP. Post-increment SP and XAR4
; by 1

PUSH P

 6-292

PUSH P Push P Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH P 0111 0110 0001 1101 X − 1

Operands P Product register

Description Push the 32-bit contents of P onto the stack pointed to by SP
Post-increment SP by 2:

[SP] = P;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR5, #VarA

MOVL P, *+XAR5[0]

PUSH P

; Initialize XAR5 pointer with the

; 22-bit address of VarA

; Load the 32-bit contents of VarA

; into P

; Push the 32-bit P into the

; location pointed to by SP.

; Post-increment SP by 2

PUSH RPC

6-293

PUSH RPC Push RPC Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH RPC 0000 0000 0000 0100 X − 1

Operands RPC Return program counter register

Description Push the contents of the RPC register onto the stack pointed to by SP.
Post-increment SP by 2:

[SP] = RPC;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH ST0

 6-294

PUSH ST0 Push ST0 Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH ST0 0111 0110 0001 1000 X − 1

Operands ST0 Status register 0

Description Push the 16-bit contents of ST0 onto the stack pointed to by SP.
Post-increment SP by 1:

[SP] = ST0;
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH ST1

6-295

PUSH ST1 Push ST1 Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH ST1 0111 0110 0000 1000 X − 1

Operands ST1 Status register 1

Description Push the 16-bit contents of ST1 onto the stack pointed to by SP.
Post-increment SP by 1:

[SP] = ST1;
SP += 1;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH T:ST0

 6-296

PUSH T:ST0 Push T and ST0 Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH T:ST0 0111 0110 0001 1001 X − 1

Operands T:ST0 The upper 16-bits of the multiplicand register and status register 0

Description Push the 16- bit contents of ST0 followed by the 16-bit contents of T onto the
stack pointed to by SP. Post-increment SP by 2:

[SP] = ST0;
[SP+1] = T;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

PUSH XARn

6-297

PUSH XARn Push 32-bit Auxiliary Register Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH XAR0 0011 1010 1011 1101 1 − 1

PUSH XAR1 1011 0010 1011 1101 1 − 1

PUSH XAR2 1010 1010 1011 1101 1 − 1

PUSH XAR3 1010 0010 1011 1101 1 − 1

PUSH XAR4 1010 1000 1011 1101 1 − 1

PUSH XAR5 1010 0000 1011 1101 1 − 1

PUSH XAR6 1100 0010 1011 1101 X − 1

PUSH XAR7 1100 0011 1011 1101 X − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary register

Description Push the 32-bit contents of XARn onto the stack pointed to by SP.
Post-increment
SP by 2:

[SP] = XARn;
 SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example IntX:

PUSH AR1H:AR0H
PUSH XAR2

PUSH XAR3

PUSH XAR4

PUSH XAR5

PUSH XAR6

PUSH XAR7

PUSH XT

 .

 .

 .

; Full context save code for an
; interrupt or trap function

; 16-bit AR1H and 16-bit AR0H store
; 32-bit store of XAR2
; 32-bit store of XAR3
; 32-bit store of XAR4
; 32-bit store of XAR5
; 32-bit store of XAR6
; 32-bit store of XAR7
; 32-bit store of XT

PUSH XT

 6-298

PUSH XT Push XT Onto Stack

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PUSH XT 1010 1011 1011 1101 X − 1

Operands XT Multiplicand register

Description Push the 32-bit contents of XT onto the stack pointed to by SP.
Post-increment SP by 2:

[SP] = XT;
SP += 2;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR1, #VarA

MOVL XT, *+XAR5[0]

PUSH XT

; Initialize XAR1 pointer with the

; 22-bit address of VarA

; Load the 32-bit contents of VarA

; into XT

; Push the 32-bit XT into the

; location pointed to by SP.

; Post-increment SP by 2

PWRITE *XAR7,loc16

6-299

PWRITE *XAR7,loc16 Write to Program Memory

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

PWRITE *XAR7, loc16 0010 0110 LLLL LLLL X Y N+5

Operands *XAR7 Indirect program−memory addressing using auxiliary register XAR7,
can access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

loc16 Addressing mode (see Chapter 5)

Description Load the program−memory location pointed to by the �*XAR7� with the
content of the location pointed to by the �loc16� addressing mode:

Prog[*XAR7] = [loc16];

On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the �*XAR7� addressing mode can be used
to access data space variables that fall within the program space address
range.

With some addressing mode combinations, you can get conflicting
references. In such cases, the C28x will give the �loc16/loc32� field priority
on changes to XAR7. For example:

PWRITE *XAR7,*−−XAR7 ; *−−XAR7 given priority
PWRITE *XAR7,*XAR7++ ; *XAR7++ given priority

Flags and
Modes

None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*XAR7�
program−memory address is copied to an internal shadow register and the
address is post−incremented by 1 during each repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in data space
; int16 Array2[N]; // Located in program space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 MOVL XAR7,#Array2 ; XAR7 = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||PWRITE *XAR7,*XAR2++ ; Array2[i] = Array1[i],

; i++

QMACL P,loc32,*XAR7/++

 6-300

QMACL P,loc32,*XAR7/++ Signed 32 X 32-bit Multiply and Accumulate (Upper Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMACL P,loc32,*XAR7 0101 0110 0100 1111
1100 0111 LLLL LLLL

1 Y N+2

QMACL P,loc32,*XAR7++ 0101 0110 0100 1111
1000 0111 LLLL LLLL

1 Y N+2

Operands P Product register

loc32 Addressing mode (see Chapter 5)
Note: The @ACC addressing mode cannot be used when the instruction is repeated. No

illegal instruction trap will be generated if used (assembler will flag an error).

*XAR7/
++

Indirect program−memory addressing using auxiliary register XAR7,
can access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description 32-bit x 32-bit signed multiply and accumulate. First, add the previous
product (stored in the P register), shifted as specified by the product shift
mode (PM), to the ACC register. Then, multiply the signed 32-bit content of
the location pointed to by the �loc32� addressing mode by the signed 32-bit
content of the program−memory location pointed to by the XAR7 register
and store the upper 32−bits of the 64-bit result in the P register. If specified,
post−increment the XAR7 register by 2:

ACC = ACC + P << PM;
P = (signed T * signed Prog[*XAR7 or *XAR7++]) >> 32;

On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the �*XAR7/++� addressing mode can be
used to access data space variables that fall within the program space
address range.

With some addressing mode combinations, you can get conflicting
references. In such cases, the C28x will give the �loc16/loc32� field priority
on changes to XAR7. For example:

QMACL P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
QMACL P,*XAR7++,*XAR7 ; *XAR7++ given priority
QMACL P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

QMACL P,loc32,*XAR7/++

6-301

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result in the ACC. The V flag will be set if an intermediate
overflow occurs in the ACC.

Example ; Calculate sum of product using 32-bit multiply and retain
; high result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in low 4M)
; int32 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + ((X[i] * C[i]) >> 32) >> 5;

 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,

; P = (X[i] * C[i]) >> 32

; i++

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

QMPYAL P,XT,loc32

 6-302

QMPYAL P,XT,loc32 Signed 32-bit Multiply (Upper Half) and Add Previous P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYAL P,XT,loc32 0101 0110 0100 0110
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Signed 32-bit x 32-bit multiply and accumulate the previous product. Add the
previous signed product (stored in the P register), shifted as specified by the
product shift mode (PM), to the ACC register. In addition, multiply the signed
32-bit content of the XT register by the signed 32-bit content of the location
pointed to by the �loc32� addressing mode and store the upper 32−bits of the
64-bit result in the P register:

ACC = ACC + P << PM;
P = (signed T * signed [loc32]) >> 32;

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

QMPYAL P,XT,loc32

6-303

Example ; Calculate signed result:
; Y32 = (X0*C0 + X1*C1 + X2*C2) >> (32 + 2)

SPM −2 ; Set product shift mode to “>> 2”
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X0 ; XT = X0
QMPYL P,XT,@C0 ; P = high 32−bits of (X0*C0)
MOVL XT,@X1 ; XT = X0
QMPYAL P,XT,@C1 ; ACC = ACC + P >> 2,

; P = high 32−bits of (X1*C1)

MOVL XT,@X2 ; XT = X0
QMPYAL P,XT,@C2 ; ACC = ACC + P >> 2,

; P = high 32−bits of (X2*C2)

ADDL ACC,P << PM ; ACC = ACC + P >> 2
MOVL @Y32,ACC ; Store result into Y32

QMPYL P,XT,loc32

 6-304

QMPYL P,XT,loc32 Signed 32 X 32-bit Multiply (Upper Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYL P,XT,loc32 0101 0110 0110 0111
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the �loc32� addressing mode and store
the upper 32−bits of the 64-bit result (a Q30 number) in the P register:

P = (signed XT * signed [loc32]) >> 32;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32 + B64
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
MOVL ACC,@B64+2 ; ACC = high 32−bits of B64
ADDUL P,@B64+0 ; P = P + low 32−bits of B64
MOVL @Y64+0,P ; Store low 32-bit result into Y64
QMPYL P,XT,@X32 ; P = high 32−bits of (M32*X32)
ADDCL ACC,@P ; ACC = ACC + P + carry
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

QMPYL ACC,XT,loc32

6-305

QMPYL ACC,XT,loc32 Signed 32 X 32-bit Multiply (Upper Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYL ACC,XT,loc32 0101 0110 0110 0011
0000 0000 LLLL LLLL

1 − 2

Operands P Product register
XT Multiplicand register
ACC Accumulator register

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the �loc32� addressing mode and store
the upper 32−bits of the 64-bit result (a Q30 number) in the ACC register:

ACC = (signed XT * signed [loc32]) >> 32;

Flags and
Modes

Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
QMPYL ACC,XT,@X32 ; ACC = high 32−bits of (M32*X32)
MOVL @Y64+0,P ; Store result into Y64
MOVL @Y64+2,ACC

QMPYSL P,XT,loc32

 6-306

QMPYSL P,XT,loc32 Signed 32-bit Multiply (Upper Half) and Subtract Previous P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYSL P,XT,loc32 0101 0110 0100 0101
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Signed 32-bit x 32-bit multiply and subtract the previous product. Subtract
the previous signed product (stored in the P register), shifted as specified by
the product shift mode (PM), from the ACC register. In addition, multiply the
signed 32-bit content of the XT register by the signed 32-bit constant value
and store the upper 32−bits of the 64-bit result in the P register:

ACC = ACC − P << PM;
P = (signed T * signed [loc32]) >> 32;

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

QMPYSL P,XT,loc32

6-307

Example ; Calculate signed result:
; Y32 = −(X0*C0 + X1*C1 + X2*C2) >> (32 + 2)

SPM −2 ; Set product shift mode to “>> 2”
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X0 ; XT = X0
QMPYL P,XT,@C0 ; P = high 32−bits of (X0*C0)
MOVL XT,@X1 ; XT = X0
QMPYSL P,XT,@C1 ; ACC = ACC − P >> 2,

; P = high 32−bits of (X1*C1)

MOVL XT,@X2 ; XT = X0
QMPYSL P,XT,@C2 ; ACC = ACC − P >> 2,

; P = high 32−bits of (X2*C2)

SUBL ACC,P << PM ; ACC = ACC − P >> 2
MOVL @Y32,ACC ; Store result into Y32

QMPYUL P,XT,loc32

 6-308

QMPYUL P,XT,loc32 Unsigned 32 X 32-bit Multiply (Upper Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYUL P,XT,loc32 0101 0110 0100 0111
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the unsigned 32-bit content of the XT register by the unsigned 32-bit
content of the location pointed to by the �loc32� addressing mode and store the
upper 32−bits of the 64-bit result in the P register:

P = (unsigned XT * unsigned [loc32]) >> 32;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction,
it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned result: Y64 = M32*X32 + B64
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
MOVL ACC,@B64+2 ; ACC = high 32−bits of B64
ADDUL P,@B64+0 ; P = P + low 32−bits of B64
MOVL @Y64+0,P ; Store low 32-bit result into Y64
QMPYUL P,XT,@X32 ; P = high 32−bits of (M32*X32)
ADDCL ACC,@P ; ACC = ACC + P + carry
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

QMPYXUL P,XT,loc32

6-309

QMPYXUL P,XT,loc32 Signed X Unsigned 32-bit Multiply (Upper Half)

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

QMPYXUL P,XT,loc32 0101 0110 0100 0010
0000 0000 LLLL LLLL

1 − 1

Operands P Product register
XT Multiplicand register
loc32 Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the unsigned 32-bit
content of the location pointed to by the �loc32� addressing mode and store
the upper 32−bits of the 64-bit result in the P register:

P = (signed XT * unsigned [loc32]) >> 32;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = (M64*X64) >> 64 + B64
; Y64 = Y1:Y0, M64 = M1:M0, X64 = X1:X0, B64 = B1:B0

MOVL XT,@X1 ; XT = X1
QMPYXUL P,XT,@M0 ; P = high 32−bits of (uns M0 * sign X1)
MOV @T,#32 ; T = 32
LSL64 ACC:P,T ; ACC:P = ACC:P << T
ASR64 ACC:P,T ; ACC:P = ACC:P >> T
MOVL @XAR4,P ; XAR5:XAR4 = ACC:P
MOVL @XAR5,ACC
MOVL XT,@M1 ; XT = M1
QMPYXUL P,XT,@X0 ; P = high 32−bits of (sign M1 * uns X0)
MOV @T,#32 ; T = 32
LSL64 ACC:P,T ; ACC:P = ACC:P << T
ASR64 ACC:P,T ; ACC:P = ACC:P >> T
MOVL @XAR6,P ; XAR7:XAR6 = ACC:P
MOVL @XAR7,ACC
IMPYL P,XT,@X1 ; P = low 32−bits of (sign M1 * sign X1)
QMPYL ACC,XT,@X1 ; ACC = high 32−bits of (sign M1 * sign X1)
ADDUL P,@XAR4 ; ACC:P = ACC:P + XAR5:XAR4
ADDCL ACC,@XAR5
ADDUL P,@XAR6 ; ACC:P = ACC:P + XAR7:XAR6
ADDCL ACC,@XAR7
ADDUL P,@B0 ; ACC:P = ACC:P + B64
ADDCL ACC,@B1
MOVL @Y0,P ; Store result into Y64
MOVL @Y1,ACC

ROL ACC

 6-310

ROL ACC Rotate Accumulator Left

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ROL ACC 1111 1111 0101 0011 X Y N+1

Operands ACC Accumulator register

Description Rotate the content of the ACC register left by one bit, filling bit 0 with the
content of the carry flag and loading the carry flag with the bit shifted out:

ACC

Rotate LeftC

ACC

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The value in bit 31 of the ACC register is transferred to C. The value in C
before the rotation is transferred to bit 0 of the ACC.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the ROL instruction will be executed N+1 times. The state of the Z, N, and C
flags will reflect the final result.

Example ; Rotate contents of VarA left by 5:

 MOVL ACC,@VarA ; ACC = VarA

 RPT #4 ; Repeat next instruction 5 times

||ROL ACC ; Rotate ACC left

 MOVL @VarA,ACC ; Store result into VarA

ROR ACC

6-311

ROR ACC Rotate Accumulator Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ROR ACC 1111 1111 0101 0010 X Y N+1

Operands ACC Accumulator register

Description Rotate the content of the ACC register right by one bit, filling bit 31 with the
content of the carry flag and loading the carry flag with the bit shifted out:

Rotate Right C

ACC

ACC

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The value in bit 0 of the ACC register is transferred to C. The value in C
before the rotation is transferred to bit 31 of the ACC.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the ROR instruction will be executed N+1 times. The state of the Z, N, and C
flags will reflect the final result.

Example ; Rotate contents of VarA right by 5:

 MOVL ACC,@VarA ; ACC = VarA

 RPT #4 ; Repeat next instruction 5 times

||ROR ACC ; Rotate ACC right

 MOVL @VarA,ACC ; Store result into VarA

RPT #8bit/loc16

 6-312

RPT #8bit/loc16 Repeat Next Instruction

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

RPT #8bit 1111 0110 CCCC CCCC X − 1

RPT loc16 1111 0111 LLLL LLLL X − 4

Operands #8bit 8-bit constant immediate value (0 to 255 range)

loc16 Addressing mode (see Chapter 5)

Description Repeat the next instruction. An internal repeat counter (RPTC) is loaded with a value
N that is either the specified #8bit constant value or the content of the location pointed
to by the �loc16� addressing mode. After the instruction that follows the RPT is exe-
cuted once, it is repeated N times; that is, the instruction following the RPT executes
N + 1 times. Because the RPTC cannot be saved during a context switch, repeat loops
are regarded as multicycle instructions and are not interruptible.

Note on syntax:

Parallel bars (||) before the repeated instruction are used as a reminder that
the instruction is repeated and is not interruptable.

When writing inline assembly, use the syntax

asm(|| RPT #8bt/ loc16 || instruction”);

Not all instructions are repeatable. If an instruction that is not repeatable follows the
RPT instruction, the RPTC counter is reset to 0 and the instruction only executes
once. The 28x Assembly Language tools check for this condition and issue warnings.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it re-
sets the repeat counter (RPTC) and executes only once.

Example ; Copy the number of elements specified in VarA from Array1
; to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < VarA; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT @VarA ; Repeat next instruction

; [VarA] + 1 times
|| XPREAD *XAR2++,*(Array1) ; Array2[i] = Array1[i],

; i++

SAT ACC

6-313

SAT ACC Saturate Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SAT ACC 1111 1111 0101 0111 X − 1

Operands ACC Accumulator register

Description Saturate the ACC register to reflect the net overflow represented in the 6-bit
overflow counter (OVC):

if(OVC > 0)
 ACC = 0x7FFF FFFF;
 V = 1;
if(OVC < 0)
 ACC = 0x8000 0000;
 V = 1;
if(OVC = 0)
 ACC = unchanged;
OVC = 0;

Flags and
Modes

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C C is cleared.

V If (OVC != 0) at the start of the operation, V is set; otherwise, V is cleared

OVC If (OVC > 0) then ACC is saturated to its maximum positive value.
If (OVC < 0) then ACC is saturated to its maximum negative value.
if (OVC = 0) then ACC is not modified.
After the operation, OVC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Add VarA, VarB and VarC and saturate result and store in VarD:

 ZAP OVC ; Clear overflow counter

 MOVL ACC,@VarA ; Load ACC with contents of VarA

 ADDL ACC,@VarB ; Add to ACC contents of VarB

 ADDL ACC,@VarC ; Add to ACC contents of VarC

 SAT ACC ; Saturate ACC based on OVC value

 MOVL @VarD,ACC ; Store result into VarD

SAT64 ACC:P

 6-314

SAT64 ACC:P Saturate 64-bit Value ACC:P

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SAT64 ACC:P 0101 0110 0011 1110 1 − 1

Operands ACC:P Accumulator register (ACC) and product register (P)

Description Saturate the 64-bit content of the combined ACC:P registers to reflect the net
overflow represented in the overflow counter (OVC):

if(OVC > 0)
 ACC:P = 0x7FFF FFFF FFFF FFFF;
 V=1;
if(OVC < 0)
 ACC:P = 0x8000 0000 0000 0000;
 V=1;
if(OVC = 0)
 ACC:P = unchaged;
OVC = 0;

Flags and
Modes

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative
and the N bit is set; otherwise N is cleared.

Z After the operation, the Z flag is set if the combined 64-bit value of the ACC:P
is zero; otherwise, Z is cleared.

C The C bit is cleared.

V At the start of the operation, if (OVC = 0) then V is cleared; otherwise, V
is set.

OVC If (OVC = 0), then no saturation takes place:
ACC:P is unchanged.

If(OVC > 0), then saturate ACC:P the maximum positive value:
ACC:P = 0x7FFF FFFF FFFF FFFF

If(OVC < 0), then saturate ACC:P to the maximum negative value:
ACC = 0x8000 0000 or ACC:P = 0x8000 0000 0000 0000

At the end of the operation, OVC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT in-
struction, it resets the repeat counter (RPTC) and executes only once.

SAT64 ACC:P

6-315

Example ; Add 64-bit VarA, VarB and VarC, sat and store result in VarD:

ZAP OVC ; Clear overflow counter

MOVL P,@VarA+0 ; Load P with low 32-bits of VarA

ADDUL P,@VarB+0 ; Add to P unsigned low 32-bits of VarB

ADDUL P,@VarC+0 ; Add to P unsigned low 32-bits of VarC

MOVU @AL,OVC ; Store overlow (repeated carry) in the ACC
; and then add higher portion of the 64 bit
; variables

MOVB AH,#0 ; Store overlow (repeated carry) in the ACC
; and then add higher portion of the 64 bit
; variables

ZAP OVC ; Clear overflow counter

ADDL ACC,@VarA+2 ; Add to ACC with carry high 32-bits of VarA

ADDL ACC,@VarB+2 ; Add to ACC with carry high 32-bits of VarB

ADDL ACC,@VarC+2 ; Add to ACC with carry high 32-bits of VarC

SAT64 ACC:P ; Saturate ACC:P based on OVC value

MOVL @VarD+0,P ; Store low 32-bit result into VarD

MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

SB 8bitOffset,COND

 6-316

SB 8bitOffset,COND

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SB 8bitOffset,COND 0110 COND CCCC CCCC X − 7/4

Operands 8bitOffset 8-bit signed immediate constant offset value (−128 to
+127 range)

COND Conditional codes:

COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry
Set

C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description Short conditional branch. If the specified condition is true, then branch
by adding the signed 8-bit constant value to the current PC value;
otherwise continue execution without branching:

If (COND = true) PC = PC + signed 8-bit offset;
If (COND = false) PC = PC + 1;

Note: If (COND = true) then the instruction takes 7 cycles.
If (COND = false) then the instruction takes 4 cycles.
If (COND = UNC) then the instruction takes 4 cycles.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.
Modes
Repeat This instruction is not repeatable. If this instruction follows the RPT

instruction, it resets the repeat counter (RPTC) and executes only once.

SBBU ACC,loc16

6-317

SBBU ACC,loc16 Subtract Unsigned Value Plus Inverse Borrow

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SBBU ACC,loc16 0001 1101 LLLL LLLL X − 1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Subtract the 16-bit contents of the location pointed to by the �loc16�
addressing mode, zero extended, and subtract the compliment of the carry
flag bit from the ACC register:

ACC = ACC − 0:[loc16] − ~C;

Flags and
Modes

Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C The state of the carry bit before execution is included in the subtraction. If the
subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow

ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow

SUBU ACC,@VarBlow ; ACC = ACC − 0:VarBlow

SUB ACC,@VarBhigh << 16 ; ACC = ACC − VarBhigh << 16

SBBU ACC,@VarClow ; ACC = ACC − VarClow − ~Carry

SUB ACC,@VarChigh << 16 ; ACC = ACC − VarChigh << 16

SBF 8bitOffset,EQ/NEQ/TC/NTC

 6-318

SBF 8bitOffset,EQ/NEQ/TC/NTC Short Branch Fast

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SBF 8bitOffset,EQ 1110 1100 CCCC CCCC 1 − 4/4

SBF 8bitOffset,NEQ 1110 1101 CCCC CCCC 1 − 4/4

SBF 8bitOffset,TC 1110 1110 CCCC CCCC 1 − 4/4

SBF 8bitOffset,NTC 1110 1111 CCCC CCCC 1 − 4/4

Operands 8bitOffset 8-bit signed immediate constant offset value (−128 to +127 range)

Syntax Description Flags Tested

NEQ Not Equal To Z = 0

EQ Equal To Z = 1

NTC Test Bit Not Set TC = 0

TC Test Bit Set TC = 1

Description Short fast conditional branch. If the specified condition is true, then
branch by adding the signed 8-bit constant value to the current PC value;
otherwise continue execution without branching:

If (tested condition = true) PC = PC + signed 8-bit off-
set;
If (tested condition = false) PC = PC + 1;

Note: The short branch fast (SBF) instruction takes advantage of dual pre−fetch queue
on the C28x core that reduces the cycles for a taken branch from 7 to 4:

If (tested condition = true) then the instruction takes 4 cycles.
If (tested condition = false) then the instruction takes 4 cycles.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

SBRK #8bit

6-319

SBRK #8bit Subtract From Current Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SBRK,#8bit 1111 1101 CCCC CCCC X − 1

Operands #8bit 8-bit constant immediate value

Description Subtract the 8-bit unsigned constant from the XARn register pointed to by
ARP:

XAR(ARP) = XAR(ARP) − 0:8bit;

Flags and
Modes

ARP The 3-bit ARP points to the current valid auxiliary register, XAR0 to XAR7.
This pointer determines which auxiliary register is modified by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once

Example .word 0xEEEE

 .word 0x0000

TableA: .word 0x1111

 .word 0x2222

 .word 0x3333

 .word 0x4444

FuncA:

 MOVL XAR1,#TableA

 MOVZ AR2,*XAR1

 SBRK #2

 MOVZ AR3,*XAR1

; Initialize XAR1 pointer

; Load AR2 with the 16−bit value
; pointed to by XAR1 (0x1111)

; Set ARP = 1

; Decrement XAR1 by 2

; Load AR3 with the 16−bit value
; pointed to by XAR1 (0xEEEE)

SETC Mode

 6-320

SETC Mode Set Multiple Status Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SETC Mode 0011 1011 CCCC CCCC X − 1,2

SETC SXM 0011 1011 0000 0001 X − 1

SETC OVM 0011 1011 0000 0010 X − 1

SETC TC 0011 1011 0000 0100 X − 1

SETC C 0011 1011 0000 1000 X − 1

SETC INTM 0011 1011 0001 0000 X − 2

SETC DBGM 0011 1011 0010 0000 X − 2

SETC PAGE0 0011 1011 0100 0000 X − 1

SETC VMAP 0011 1011 1000 0000 X − 1

Operands mode 8-bit immediate mask (0x00 to 0xFF)

Description Set the specified status bits. The �mode� operand is a mask value that relates
to the status bits in this way:

�Mode� bit Status Register Flag Cycles

0 ST0 SXM 1

1 ST0 OVM 1

2 ST0 TC 1

3 ST0 C 1

4 ST1 INTM 2

5 ST1 DBGM 2

6 ST1 PAGE0 1

7 ST1 VMAP 1

Note: The assembler will accept any number of flag names in any order. For example:
SETC INTM,TC ; Set INTM and TC bits to 1
SETC TC,INTM,OVM,C ; Set TC, INTM, OVM, C bits to 1

Flags and
M d

SXM Any of the specified bits can be set by the instruction.g
Modes OVM

TC
C
INTM
DBGM
PAGE0
VMAP

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once

SETC Mode

6-321

Example ; Modify flag settings:
SETC INTM,DBGM ; Set INTM and DBGM bits to 1
CLRC TC,C,SXM,OVM ; Clear TC, C, SXM, OVM bits to 0
CLRC #0xFF ; Clear all bits to 0
SETC #0xFF ; Set all bits to 1
SETC C,SXM,TC,OVM ; Set TC, C, SXM, OVM bits to 1
CLRC DBGM,INTM ; Clear INTM and DBGM bits to 0

SETC M0M1MAP

 6-322

SETC M0M1MAP Set the M0M1MAP Status Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SETC M0M1MAP 0101 0110 0001 1010 X − 5

Operands M0M1MAP Status bit

Description Set the M0M1MAP status bit, configuring the mapping of the M0 and M1
memory blocks for C28x/C2XLP operation. The memory blocks are
mapped as follows:

M0M1MAP bit Data Space Program Space

0 M0: 0x000 to 0x3FF M0: 0x400 to 0x7FF

(C27x) M1: 0x400 to 0x7FF M1: 0x000 to 0x3FF

1 M0: 0x000 to 0x3FF

(C28x/C2XLP) M1: 0x400 to 0x7FF
Note: The pipeline is flushed when this instruction is executed.

Flags and
Modes

M0M1MAP The M0M1MAP bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x:
Reset:
 SETC OBJMODE ; Enable C28x Object Mode
 CLRC AMODE ; Enable C28x Address Mode
 .c28_amode ; Tell assembler we are in C28x address mode
 SETC M0M1MAP ; Enable C28x Mapping Of M0 and M1 blocks
 .
 .

SETC OBJMODE

6-323

SETC OBJMODE Set the OBJMODE Status Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SETC OBJMODE 0101 0110 0001 1111 X − 5

Operands OBJMODE Status bit

Description Set the OBJMODE status bit, putting the device in C28x object mode
(supports C2XLP source):

Flags and
Modes

OBJMODE Set the OBJMODE bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x:
Reset:
 SETC OBJMODE ; Enable C28x Object Mode
 CLRC AMODE ; Enable C28x Address Mode
 .c28_amode ; Tell assembler we are in C28x address mode
 SETC M0M1MAP ; Enable C28x Mapping Of M0 and M1 blocks
 .
 .

SETC XF

 6-324

SETC XF Set XF Bit and Output Signal

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SETC XF 0101 0110 0010 0110 X − 1

Operands XF Status bit and output signal

Description Set the XF status bit and pull the corresponding output signal high.

Flags and
Modes

XF The XF status bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Pulse XF signal high if branch not taken:

 MOV AL,@VarA ; Load AL with contents of VarA
 SB Dest,NEQ ; ACC = VarA
 SETC XF ; Set XF bit and signal high
 CLRC XF ; Clear XF bit and signal low
 .
 .
Dest:
 .

SFR ACC,#1..16

6-325

SFR ACC,#1..16 Shift Accumulator Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SFR ACC,#1..16 1111 1111 0100 SHFT X Y N+1

Operands ACC Accumulator register

#1..16 Shift value

Description Right shift the content of the ACC register by the amount specified in the shift
field. The type of shift (arithmetic or logical) is determined by the state of the
sign extension mode (SXM) bit:

if(SXM = 1) // sign extension mode enabled
 ACC = S:ACC >> shift value; // arithmetic shift right
else //sign extension mode disabled
 ACC = 0:ACC >> shift value; // logical shift right

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The last bit shifted out is loaded into the C flag bit.

SXM If (SXM = 1), then the operation behaves like an arithmetic right shift.
If (SXM = 0), then the operation behaves like a logical right shift.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the SFR instruction will be executed N+1 times. The state of the Z, N and C
flags will reflect the final result.

Example ; Arithmetic shift right contents of VarA by 10:

 MOVL ACC,@VarA ; ACC = VarA

 SETC SXM ; Enable sign extension mode

 SFR ACC,#10 ; Arithmetic shift right ACC by 10

 MOVL @VarA,ACC ; Store result into VarA

SFR ACC,T

 6-326

SFR ACC,T Shift Accumulator Right

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SFR ACC,T 1111 1111 0101 0001 X − 1

Operands ACC Accumulator register

T Upper 16-bits of the multiplicand (XT) register

Description Right shift the content of the ACC register by the amount specified in the four
least significant bits of the T register, T(3:0) = 0..15. Higher order bits are
ignored. The type of shift (arithmetic or logical) is determined by the state of
the sign extension mode (SXM) bit:

if(SXM = 1) // sign extension mode enabled
 ACC = S:ACC >> T(3:0); // arithmetic shift right
else // sign extension mode disabled
 ACC = 0:ACC >> T(3:0); // logical shift right

Flags and
Modes

Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the zero condition and Z is affected.

N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even
if the T register specifies a shift of 0, the content of the ACC register is still
tested for the negative condition and N is affected.

C If (T(3:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded
into the C flag bit.

SXM if (SXM = 1), then the operation behaves like an arithmetic right shift.
If (SXM = 0), then the operation behaves like a logical right shift.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the SFR instruction will be executed N+1 times. The state of the Z, N and C
flags will reflect the final result.

Example ; Arithmetic shift right contents of VarA by VarB:

 MOVL ACC,@VarA ; ACC = VarA

 MOV T,@VarB ; T = VarB (shift value)

 SETC SXM ; Enable sign extension mode

 SFR ACC,T ; Arithmetic shift right ACC by T(3:0)

 MOVL @VarA,ACC ; Store result into VarA

SPM shift

6-327

SPM shift Set Product Mode Shift Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC
SPM +1 1111 1111 0110 1000 X − 1
SPM 0 1111 1111 0110 1001 X − 1
SPM −1 1111 1111 0110 1010 X − 1
SPM −2 1111 1111 0110 1011 X − 1
SPM −3 1111 1111 0110 1100 X − 1
SPM −4 (Valid only when AMODE = 0)
SPM +4 (Valid only when AMODE = = 1)

1111 1111 0110 1101 X − 1

SPM −5 1111 1111 0110 1110 X − 1
SPM −6 1111 1111 0110 1111 X − 1

Operands shift Product shift mode (+4, +1, 0, −1, −2, −3, −4, −5, −6)

Description Specify a product shift mode. A negative value indicates an arithmetic right
shift; positive numbers indicate a logical left shift. The following table shows
the relationship between the �shift� operand and the 3-bit value that gets
loaded into the product shift mode (PM) bits in ST0. The address mode bit
(AMODE) selects between two types of shift decodes as shown in the table
below:

PM Bits AMODE = 1 AMODE = 0

000 SPM +1 SPM +1

001 SPM 0 SPM 0

010 SPM −1 SPM −1

011 SPM −2 SPM −2

100 SPM −3 SPM −3

101 SPM +4 SPM −4

110 SPM −5 SPM −5

111 SPM −6 SPM −6

Flags and
Modes

PM PM is loaded with the 3-bit value specified by the selected �shift� value.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
the SFR instruction will be executed N+1 times. The state of the Z, N and C
flags will reflect the final result.

SPM shift

 6-328

Example ; Calculate: Y32 = M16*X16 >> 4 + B32

CLRC AMODE ; Make sure AMODE = 0
SPM −4 ; Set product shift mode to “>> 4”
MOV T,@X16 ; T = X16
MPY P,XT,@M16 ; P = X16*M16
MOVL ACC,@B32 ; ACC = B32
ADDL ACC,P << PM ; ACC = ACC + (P >> 4)
MOVL @Y32,ACC ; Store result into Y32

SQRA loc16

6-329

SQRA loc16 Square Value and Add P to ACC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SQRA loc16 0101 0110 0001 0101
0000 0000 LLLL LLLL

1 Y N+1

Operands loc16 Addressing mode (see Chapter 5)

Description Add the previous product (stored in the P register), shifted by the amount
specified by the product shift mode (PM), to the ACC register. Then the
content of the location pointed to by the �loc16� addressing mode is loaded
into the T register, squared, and stored in the P register:

ACC = ACC + P << PM;
T = [loc16];
P = T * [loc16];

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.
OVC If overflow mode is disabled; and if the operation generates a positive

overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag is set if an intermediate overflow occurs.

SQRA loc16

 6-330

Example ; Calculate sum of squares using 16-bit multiply:
; int16 X[N] ; Data information
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * X[i]) >> 5;

 MOVL XAR2,#X ; XAR2 = pointer to X

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #N−1 ; Repeat next instruction N times

||SQRA *XAR2++ ; ACC = ACC + P >> 5,
; P = (*XAR2++)^2

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

SQRS loc16

6-331

SQRS loc16 Square Value and Subtract P From ACC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SQRS loc16 0101 0110 0001 0001
xxxx xxxx LLLL LLLL

1 Y N+1

Operands loc16 Addressing mode (see Chapter 5)

Description Subtract the previous product (stored in the P register), shifted by the
amount specified by the product shift mode (PM), from the ACC register.
Then the content of the location pointed to by the �loc16� addressing mode is
loaded into the T register, squared, and stored in the P register:
ACC = ACC − P << PM;
T = [loc16];
P = T * [loc16];

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.
OVC If overflow mode is disabled; and if the operation generates a positive

overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. The state of the Z, N, C and OVC flags will
reflect the final result. The V flag will be set if an intermediate overflow
occurs.

SQRS loc16

 6-332

Example ; Calculate sum of negative squares using 16-bit multiply:
; int16 X[N] ; Data information
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum − (X[i] * X[i]) >> 5;

 MOVL XAR2,#X ; XAR2 = pointer to X

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #N−1 ; Repeat next instruction N times

||SQRS *XAR2++ ; ACC = ACC − P >> 5,
; P = (*XAR2++)^2

 SUBL ACC,P << PM ; Perform final subtraction

 MOVL @sum,ACC ; Store final result into sum

SUB ACC,loc16 << #0...16

6-333

SUB ACC,loc16 << #0...16 Subtract Shifted Value From Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUB ACC,loc16 << #0 1010 1110 LLLL LLLL 1 Y N+1

1000 0000 LLLL LLLL 0 − 1

SUB ACC,loc16 << #1..15 0101 0110 0000 0000

0000 SHFT LLLL LLLL

1 Y N+1

1000 SHFT LLLL LLLL 0 − 1

SUB ACC,loc16 << #16 0000 0100 LLLL LLLL X Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
#0..16 Shift value (default is �<< #0� if no value specified)

Description Subtract the left-shifted 16-bit location pointed to by the �loc16� addressing
mode from the ACC register. The shifted value is sign extended if sign
extension mode is turned on (SXM=1) else the shifted value is zero extended
(SXM= 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled
 ACC = ACC − S:[loc16] << shift value;
else // sign extension mode disabled
 ACC = ACC − 0:[loc16] << shift value;

Flags and
Modes

Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else Z is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.
Exception: If a shift of 16 is used, the SUB instruction can clear C but not set
it.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the addition. Else, the value will be
zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFF FFFF) or maximum negative (0x8000 0000) if the
operation overflowed.

SUB ACC,loc16 << #0...16

 6-334

Repeat If the operation is repeatable, then the instruction will be executed N+1
times. The state of the Z, N, C flags will reflect the final result. The V flag will
be set if an intermediate overflow occurs. The OVC flag will count
intermediate overflows, if overflow mode is disabled. If the operation is not
repeatable, the instruction will execute only once.

Example ; Calculate signed value: ACC = (VarA << 10) − (VarB << 6);
SETC SXM ; Turn sign extension mode on

MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10

SUB ACC,@VarB << #6 ; Subtract VarB left shifted by 6 to ACC0

SUB ACC,loc16 <<T

6-335

SUB ACC,loc16 <<T Subtract Shifted Value From Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUB ACC,loc16 <<T 0101 0110 0010 0111
0000 0000 LLLL LLLL

1 Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)
T Upper 16−bits of the multiplicand register, XT(31:16)

Description Subtract from the ACC register the left−shifted contents of the 16-bit location
pointed to by the �loc16� addressing mode. The shift value is specified by the
four least significant bits of the T register, T(3:0) = shift value = 0..15. Higher
order bits are ignored. The shifted value is sign extended if sign extension
mode is turned on (SXM=1) else the shifted value is zero extended (SXM=0).
The lower bits of the shifted value are zero filled:

if(SXM = 1) // sign extension mode enabled
 ACC = ACC − S:[loc16] << T(3:0);
else // sign extension mode disabled
 ACC = ACC − 0:[loc16] << T(3:0);

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the addition. Else, the value will be
zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFF FFFF) or maximum negative (0x8000 0000) if the
operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

SUB ACC,loc16 <<T

 6-336

Example ; Calculate signed value: ACC = (VarA << SB) − (VarB << SB)
SETC SXM ; Turn sign extension mode on

MOV T,@SA ; Load T with shift value in SA

MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA

MOV T,@SB ; Load T with shift value in SB

SUB ACC,@VarB << T ; Subtract from ACC shifted contents
; of VarB

SUB ACC,#16bit << #0..15

6-337

SUB ACC,#16bit << #0..15 Subtract Shifted Value From Accumulator

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUB ACC,#16bit << #0..15 1111 1111 0000 SHFT
CCCC CCCC CCCC CCCC

X − 1

Operands ACC Accumulator register
#16bit 16-bit immediate constant value
#0..15 Shift value (default is �<< #0� if no value specified)

Description Subtract the left shifted 16-bit immediate constant value from the ACC
register. The shifted value is sign extended if sign extension mode is turned
on (SXM=1) else the shifted value is zero extended (SXM=0). The lower bits
of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled
 ACC = ACC − S:16bit << shift value;
else // sign extension mode disabled
 ACC = ACC − 0:16bit << shift value;

Smart Encoding:
If #16bit is an 8-bit number and the shift is zero, then the assembler will
encode this instruction as SUBB ACC, #8bit for improved efficiency. To
override this encoding, use the SUBW ACC, #16bit instruction alias.

Flags and Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.g
Modes N After the subtraction, the N flag is set if bit 31 of the ACC is 1, N is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the
�loc16� field, will be sign extended before the addition. Else, the value will be
zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarB << 10) − (23 << 6);
SETC SXM ; Turn sign extension mode on

MOV ACC,@VarB << #10 ; Load ACC with VarB left shifted by 10

SUB ACC,#23 << #6 ; Subtract from ACC 23 left shifted by 6

SUB AX, loc16

 6-338

SUB AX, loc16 Subtract Specified Location From AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUB AX, loc16 1001 111A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register
loc16 Addressing mode (see Chapter 5)

Description Subtract the 16−bit content of the location pointed to by the �loc16�
addressing mode from the specified AX register (AH or AL) and store the
results in AX:
AX = AX − [loc16];

Flags and
Modes

N After the subtraction, AX is tested for a negative condition. If bit 15 of AX is 1,
then the negative flag bit is set; otherwise it is cleared.

Z After the subtraction, AX is tested for a zero condition. The zero flag bit is set
if the operation generates AX = 0, otherwise it is cleared

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in the
positive direction. Signed negative overflow occurs if the result crosses the
max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract the contents of VarA with VarB and store in VarC

MOV AL,@VarA ; Load AL with contents of VarA

SUB AL,@VarB ; Subtract from AL contents of VarB
MOV @VarC,AL ; Store result in VarC

SUB loc16, AX

6-339

SUB loc16, AX Reverse-Subtract Specified Location From AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUB loc16, AX 0111 010A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Subtract the content of the specified AX register (AH or AL) from the 16-bit
content of the location pointed to by the �loc16� addressing mode and store
the result in location pointed to by �loc16�:
[loc16] = [loc16] − AX;

Flags and
Modes

N After the subtraction, [loc16] is tested for a negative condition. If bit 15 of
[loc16]
is 1, then the negative flag bit is set; otherwise it is cleared.

Z After the subtraction, [loc16] is tested for a zero condition. The zero flag bit is
set if the operation generates [loc16] = 0; otherwise it is cleared

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in the
positive direction. Signed negative overflow occurs if the result crosses the
max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract the contents of VarA from index register AR0:

MOV AL,@VarA ; Load AL with contents of VarA

SUB @AR0,AL ; AR0 = AR0 − AL
; Subtract the contents of VarB from VarC:
MOV AH,@VarB ; Load AH with contents of VarB
SUB @VarC,AH ; VarC = VarC − AH

SUBB ACC,#8bit

 6-340

SUBB ACC,#8bit Subtract 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBB ACC,#8bit 0001 1001 CCCC CCCC X − 1

Operands ACC Accumulator register
#8bit 8-bit immediate constant value

Description Subtract the zero−extended, 8-bit constant from the ACC register:
ACC = ACC − 0:8bit;

Flags and Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.g
Modes N After the subtraction, the N flag is set if bit 31 of the ACC is 1, N is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise, V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Decrement contents of 32-bit location VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA

SUBB ACC,#1 ; Subtract 1 from ACC

MOVL @VarA,ACC ; Store result back into VarA

SUBB SP,#7bit

6-341

SUBB SP,#7bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBB SP,#7bit 1111 1110 1CCC CCCC X − 1

Operands SP Stack pointer
#7bit 7-bit immediate constant value

Description Subtract a 7-bit unsigned constant to SP and store the result in SP:
SP = SP − 0:7bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example FuncA: ; Function with local variables on
; stack.

 ADDB SP,#N ; Reserve N 16−bit words of space for
; local variables on stack:

 .
 .
 .
 SUBB SP,#N ; Deallocate reserved stack space.

 LRETR ; Return from function.

SUBB XARn,#7bit

 6-342

SUBB XARn,#7bit Subtract 7-Bit From Auxiliary Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBB XARn, #7bit 1101 1nnn 1CCC CCCC X − 1

Operands XARn XAR0 to XAR7, 32-bit auxiliary registers
#7bit 7−bit immediate constant value

Description Subtract the 7−bit unsigned constant from XARn and store the result in
XARn:
XARn = XARn − 0:7bit;

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example MOVL XAR1,#VarA

MOVL XAR2,*XAR1

SUBB XAR2,#10h‘

; Initialize XAR1 pointer with address
; of VarA

; Load XAR2 with contents of VarA

; XAR2 = VarA − 0x10

SUBBL ACC, loc32

6-343

SUBBL ACC, loc32 Subtract 32-bit Value Plus Inverse Borrow

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBBL ACC, loc32
0101 0110 0101 0100
0000 0000 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

Description Subtract from the ACC the 32-bit location pointed to by the �loc32�
addressing mode and the logical inversion of the value in the carry flag bit:

ACC = ACC − [loc32] − ~C;

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C The state of the carry bit before execution is included in the subtraction. If the
subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract two 64-bit values (VarA and VarB) and store result
; in VarC:

MOVL ACC,@VarA+0 ; Load ACC with contents of the low
; 32-bits of VarA

SUBUL ACC,@VarB+0 ; Subtract from ACC the contents of
; the low 32-bits of VarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32-bits of VarA

SUBBL ACC, loc32

 6-344

SUBBL ACC,@VarB+2 ; Subtract from ACC the contents of
; the high 32-bits of VarB with borrow

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

SUBCU ACC,loc16

6-345

SUBCU ACC,loc16 Subtract Conditional 16 Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBCU ACC,loc16 0001 1111 LLLL LLLL X Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Perform 16-bit conditional subtraction, which can be used for unsigned
modulus division:

temp(32:0) = ACC << 1 − [loc16] << 16
if(temp(32:0) >= 0)
 ACC = temp(31:0) + 1
else
 ACC = ACC << 1

To perform 16-bit unsigned modulus division, the AH register is zeroed and
the AL register is loaded with the �Numerator� value prior to executing the
SUBCU instruction. The value pointed to be the �loc16� addressing mode
contains the �Denominator� value. After executing the SUBCU instruction 16
times, the AH register will contain the �Remainder� and the AL register will
contain the �Quotient� results. To perform signed modulus division, the
�Numerator� and �Denominator� values must be converted to unsigned
quantities, before executing the SUBCU instruction. The final �Quotient�
result must be negated if the �Numerator� and �Denominator� values were of
different sign else the quotient is left unchanged.

Flags and
Modes

Z At the end of the operation, the Z flag is set if the ACC value is zero, else Z is
cleared. The calculation of temp(32:0) has no effect on the Z bit.

N At the end of the operation, the N flag is set if bit 31 of the ACC is 1, else N is
cleared. The calculation of temp(32:0) has no effect on the N bit.

C If the calculation of temp(32:0) generates a borrow, C is cleared; otherwise C
is set.
Note: The V and OVC flags are not affected by the operation.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example 1 ; Calculate unsigned: Quot16 = Num16Den16, Rem16 = Num16%Den16

 MOVU ACC,@Num16 ; AL = Num16, AH = 0

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16

 MOV @Rem16,AH ; Store remainder in Rem16

 MOV @Quot16,AL ; Store quotient in Quot16

SUBCU ACC,loc16

 6-346

Example 2 ; Calculate signed: Quot16 = Num16Den16, Rem16 = Num16%Den16

 CLRC TC ; Clear TC flag, used as sign flag
 MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0
 ABSTC ACC ; Take abs value, TC = sign ^ TC
 MOV T,@AH ; Temp save Den16 in T register
 MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0
 ABSTC ACC ; Take abs value, TC = sign ^ TC
 MOVU ACC,@AH ; AH = 0, AL = Num16
 RPT #15 ; Repeat operation 16 times
||SUBCU ACC,@T ; Conditional subtract with Den16
 MOV @Rem16,AH ; Store remainder in Rem16
 MOV ACC,@AL << 16 ; AH = Quot16, AL = 0
 NEGTC ACC ; Negate if TC = 1
 MOV @Quot16,AH ; Store quotient in Quot16

Example 3 ; Calculate unsigned: Quot32 = Num32/Den16, Rem16 = Num32%Den16

 MOVU ACC,@Num32+1 ; AH = 0, AL = high 16-bits of Num32

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16

 MOV @Quot32+1,AL ; Store high 16-bit in Quot32

 MOV AL,@Num32+0 ; AL = low 16-bits of Num32

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16

 MOV @Rem16,AH ; Store remainder in Rem16

 MOV @Quot32+0,AL ; Store low 16-bit in Quot32

Example 4 ; Calculate signed: Quot32 = Num32/Den16, Rem16 = Num32%Den16

 CLRC TC ; Clear TC flag, used as sign flag

 MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOV T,@AH ; Temp save Den16 in T register

 MOVL ACC,@Num32 ; ACC = Num32

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOV P,@ACC ; P = Num32

 MOVU ACC,@PH ; AH = 0, AL = high 16-bits of Num32

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16

 MOV @Quot32+1,AL ; Store high 16-bit in Quot32

 MOV AL,@PL ; AL = low 16-bits of Num32

 RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16

 MOV @Rem16,AH ; Store remainder in Rem16

 MOV ACC,@AL << 16 ; AH = low 16-bits of Quot32, AL = 0

 NEGTC ACC ; Negate if TC = 1

 MOV @Quot32+0,AH ; Store low 16-bit in Quot32

SUBCUL ACC,loc32

6-347

SUBCUL ACC,loc32 Subtract Conditional 32 Bits

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBCUL ACC,loc32
0101 0110 0001 0111
0000 0000 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Perform 32-bit conditional subtraction, which can be used for unsigned
modulus division:

temp(32:0) = ACC << 1 + P(31) − [loc32];
if(temp(32:0) >= 0)
 ACC = temp(31:0);
 P = (P << 1) + 1;
else
 ACC:P = ACC:P << 1;

To perform 32-bit unsigned modulus division, the ACC register is zeroed and
the P register is loaded with the �Numerator� value prior to executing the
SUBCUL instruction. The value pointed to be the �loc32� addressing mode
contains the �Denominator� value. After executing the SUBCUL instruction
32 times, the ACC register will contain the �Remainder� and the P register will
contain the �Quotient� results. To perform signed modulus division, the
�Numerator� and �Denominator� values must be converted to unsigned
quantities, before executing the SUBCUL instruction. The final �Quotient�
result must be negated if the �Numerator� and �Denominator� values were of
different sign else the quotient is left unchanged.

Flags and
Modes

Z At the end of the operation, the Z flag is set if the ACC value is zero, else Z is
cleared. The calculation of temp(32:0) has no effect on the Z bit.

N At the end of the operation, the N flag is set if bit 31 of the ACC is 1, else N is
cleared. The calculation of temp(32:0) has no effect on the N bit.

C If the calculation of temp(32:0) generates a borrow, C is cleared; otherwise C
is set.
Note: The V and OVC flags are not affected by the operation.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

SUBCUL ACC,loc32

 6-348

Example 1 ; Calculate unsigned: Quot32 = Num32/Den32, Rem32 = Num32%Den32

 MOVB ACC,#0 ; Zero ACC

 MOVL P,@Num32 ; Load P register with Num32

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32

 MOVL @Rem32,ACC ; Store remainder in Rem32

 MOVL @Quot32,P ; Store quotient in Quot32

Example 2 ; Calculate signed: Quot32 = Num32/Den32, Rem32 = Num32%Den32

 CLRC TC ; Clear TC flag, used as sign flag

 MOVL ACC,@Den32 ; Load ACC with contents of Den32

 ABSTC ACC ; Take absolute value, TC = sign ^ TC

 MOVL XT,@ACC ; Temp save denominator in XT register

 MOVL ACC,@Num32 ; Load ACC register with Num32

 ABSTC ACC ; Take abs value, TC = sign ^ TC

 MOVL P,@ACC ; Load P register with numerator

 MOVB ACC,#0 ; Zero ACC

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator

 MOVL @Rem32,ACC ; Store remainder in Rem32

 MOVL ACC,@P ; Load ACC with quotient

 NEGTC ACC ; Negate ACC if TC=1 (negative result)

 MOVL @Quot32,ACC ; Store quotient in Quot32

Example 3 ; Calculate unsigned: Quot64 = Num64Den32, Rem32 = Num64%Den32

 MOVB ACC,#0 ; Zero ACC

 MOVL P,@Num64+2 ; Load P with high 32-bits of Num64

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32

 MOVL @Quot64+2,P ; Store high 32 bit quotient in Quot64

 MOVL P,@Num64+0 ; Load P with low 32-bits of Num64

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32

 MOVL @Rem32,ACC ; Store remainder in Rem32

 MOVL @Quot64+0,P ; Store low 32 bit quotient in Quot64

SUBCUL ACC,loc32

6-349

Example 4 ; Calculate signed: Quot64 = Num364Den32, Rem32 = Num64%Den32

 MOVL ACC,@Num64+2 ; Load ACC:P with 64-bit numerator

 MOVL P,@Num64+0

 TBIT @AH,#15 ; TC = sign of numerator

 SBF $10,NTC ; Take absolute value of numerator

 NEG64 ACC:P

$10:

 MOVL @XAR3,P ; Temp save numerator low in XAR3

 MOVL P,@ACC ; Load P register with numerator high

 MOVL ACC,@Den32 ; Load ACC with contents of Den32

 ABSTC ACC ; Take absolute value, TC = sign ^ TC

 MOVL XT,@ACC ; Temp save denominator in XT register

 MOVB ACC,#0 ; Zero ACC

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator

 MOVL @XAR4,P ; Store high quotient in XAR4

 MOVL P,@XAR3 ; Load P with low numerator

 RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator

 MOVL @Rem32,ACC ; Store remainder in Rem32

 MOVL ACC,@XAR4 ; Load ACC with high quotient from XAR4

 SBF $20,NTC ; Take absolute value of quotient

 NEG64 ACC:P

$20:

 MOVL @Quot64+0,P ; Store low quotient into Quot64

 MOVL @Quot64+2,ACC ; Store high quotient into Quot64

SUBL ACC, loc32

 6-350

SUBL ACC, loc32 Subtract 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBL ACC, loc32 0000 0011 LLLL LLLL 1 − 1

Operands ACC Accumulator register

loc32 Addressing mode (see Chapter 5)

Description Subtract the 32-bit location pointed to by the �loc32� addressing mode from
the ACC register :

ACC = ACC − [loc32];

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If OVM = 0 (disabled), then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented.

If OVM = 1 (enabled), then the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarC = VarA−VarB

MOVL ACC,@VarA ; Load ACC with contents of VarA

SUBL ACC,@VarB ; Subtract from ACC the contents of VarB

MOVL @VarC,ACC ; Store result into VarC

SUBL ACC,P << PM

6-351

SUBL ACC,P << PM Subtract 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBL ACC,P << PM 0001 0001 1010 1100 X Y N+1

Note: This instruction is an alias for the �MOVS T,loc16� operation with �loc16 = @T� addressing mode.

Operands ACC Accumulator register

P Product register

<<PM Product shift mode

Description Subtract the content of the P register, shifted as specified by the product shift
mode (PM), from the content of the ACC register:

ACC = ACC − P << PM;

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.
OVC If OVM = 0 (disabled) and the operation generates a positive overflow, the

counter is incremented; if the operation generates a negative overflow, the
counter is decremented.
If OVM = 1 (enabled), the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example ; Calculate: Y = ((B << 11) − (M*X >> 4)) >> 10
; Y, M, X, B are Q15 values

SPM −4 ; Set product shift to >> 4

SETC SXM ; Enable sign extension mode

MOV T,@M ; T = M

MPY P,T,@X ; P = M * X

MOV ACC,@B << 11 ; ACC = S:B << 11

SUBL ACC,P << PM

 6-352

SUBL ACC,P << PM ; ACC = (S:B << 11) − (M*X >> 4)

MOVH @Y,ACC << 5 ; Store Q15 result into Y

SUBL loc32, ACC

6-353

SUBL loc32, ACC Subtract 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBL loc32, ACC
0101 0110 0100 0001
0000 0000 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

Description Subtract the content of the ACC register from the location pointed to by the
�loc32� addressing mode:

[loc32] = [loc32] − ACC;

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the [loc32] is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If OVM = 0 (disabled) and the operation generates a positive overflow, the
counter is incremented and if the operation generates a negative overflow,
the counter is decremented.
If OVM = 1 (enabled) the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Decrement the 32-bit value VarA:

MOVB ACC,#1 ; Load ACC with 0x00000001

SUBL @VarA,ACC ; VarA = VarA − ACC

SUBR loc16,AX

 6-354

SUBR loc16,AX Reverse-Subtract Specified Location From AX

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBR loc16,AX 1110 101A LLLL LLLL 1 − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Subtract the 16−bit content of the location pointed to by the �loc16�
addressing mode from the specified AX register (AH or AL), and store the
result in location pointed to by �loc16�:

[loc16] = AX − [loc16]

This instruction performs a read-modify-write operation.

Flags and
Modes

N After the subtraction, [loc16] is tested for a negative condition. If bit 15 of
[loc16] is 1, then the negative flag bit is set; otherwise it is cleared.

Z After the subtraction, [loc16] is tested for a zero condition. The zero flag
bit is set if the operation generates [loc16] = 0, otherwise it is cleared

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected. Signed positive
overflow occurs if the result crosses the max positive value (0x7FFF) in
the positive direction. Signed negative overflow occurs if the result
crosses the max negative value (0x8000) in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract index register AR0 from VarA and store in AR0:

MOV AL,@VarA ; Enable
sign extensio ;
with a left shift of 3

; Load AL with contents of VarA

SUBR @AR0,AL ; AR0 = AL − AR0
; Subtract the contents of VarC from VarB and store in VarC:
MOV AH,@VarB ; Load AH with contents of VarB
SUBR @VarC,AH ; VarC = AH − VarC

SUBRL loc32, ACC

6-355

SUBRL loc32, ACC Reverse-Subtract Specified Location From ACC

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBRL loc32, ACC
0101 0110 0100 1001
0000 0000 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

Description Subtract from the ACC register the 32-bit location pointed to by the �loc32�
addressing mode and store the result in the location pointed to by �loc32�:

[loc32] = ACC − [loc32];

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If(OVM = 0, disabled) then if the operation generates a positive overflow,
then the counter is incremented and if the operation generates a negative
overflow, then the counter is decremented. If(OVM = 1, enabled) then the
counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarB − VarA

MOVL ACC,@VarB ; Load ACC with contents of VarB

SUBRL @VarA,ACC ; VarA = ACC − VarA

SUBU ACC, loc16

 6-356

SUBU ACC, loc16 Subtract Unsigned 16-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBU ACC, loc16 0000 0001 LLLL LLLL X Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Subtract the 16-bit contents of the location pointed to by the �loc16�
addressing mode from the ACC register. The addressed location is zero
extended before the add:

ACC = ACC − 0:[loc16];

Flags and
Modes

Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If OVM = 0 (disabled) and the operation generates a positive overflow, the
counter is incremented and if the operation generates a negative overflow,
the counter is decremented.
If OVM = 1 (enabled), the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times.
The state of the Z, N, C flags will reflect the final result. The V flag will be set if
an intermediate overflow occurs. The OVC flag will count intermediate
overflows, if overflow mode is disabled.

Example ; Subtract three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow

ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow

SUBU ACC,@VarBlo293w ; ACC = ACC − 0:VarBlow

SUB ACC,@VarBhigh << 16 ; ACC = ACC − VarBhigh << 16

SBBU ACC,@VarClow ; ACC = ACC − VarClow − ~Carry

SUB ACC,@VarChigh << 16 ; ACC = ACC − VarChigh << 16

SUBUL ACC, loc32

6-357

SUBUL ACC, loc32 Subtract Unsigned 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBUL ACC, loc32
0101 0110 0101 0101
0000 0000 LLLL LLLL 1 − 1

Operands loc32 Addressing mode (see Chapter 5)

ACC Accumulator register

Description Subtract from the ACC register the 32-bit the location pointed to by the
�loc32� addressing mode. The subtraction is treated as an unsigned SUBL
operation:

ACC = ACC − [loc32]; // unsigned subtraction

Note: The difference between a signed and unsigned 32-bit subtract is in the treatment of the
overflow counter (OVC). For a signed SUBL, the OVC counter monitors
positive/negative overflow. For an unsigned SUBL, the OVC unsigned (OVCU) counter
monitors the borrow.

Flags and
Modes

Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is
cleared.

N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is
cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented whenever a subtraction operation
generates an unsigned borrow. The OVM mode does not affect the OVCU
counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract two 64-bit values (VarA and VarB) and store result
; in VarC:

MOVL ACC,@VarA+0 ; Load ACC with contents of the low
; 32-bits of VarA

SUBUL ACC,@VarB+0 ; Subtract from ACC the contents of
; the low 32-bits of VarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32-bits of VarA

SUBBL ACC,@VarB+2 ; Subtract from ACC the contents of
; the high 32-bits of VarB with borrow

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

SUBUL P,loc32

 6-358

SUBUL P,loc32 Subtract Unsigned 32-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

SUBUL P,loc32
0101 0110 0101 1101
0000 0000 LLLL LLLL 1 − 1

Operands P Product register

loc32 Addressing mode (see Chapter 5)

Description Subtract from the P register the 32-bit content of the location pointed to by
the �loc32� addressing mode. The addition is treated as an unsigned SUB
operation:

P = P − [loc32]; // unsigned subtract

Note: The difference between a signed and unsigned 32-bit subtract is in the treatment of the
overflow counter (OVC). For a signed SUBL, the OVC counter monitors
positive/negative overflow. For an unsigned SUBL, the OVC unsigned (OVCU) counter
monitors the borrow.

Flags and
Modes

Z After the subtraction, the Z flag is set if the P value is zero, else Z is cleared.

N After the subtraction, the N flag is set if bit 31 of P is 1, else N is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V If a signed overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented whenever a subtraction operation
generates an unsigned borrow. The OVM mode does not affect the OVCU
counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Subtract 64-bit VarA − VarB and store result in VarC:

MOVL P,@VarA+0 ; Load P with low 32-bits of VarA

MOVL ACC,@VarA+2 ; Load ACC with high 32-bits of VarA

SUBUL P,@VarB+0 ; Sub from P unsigned low 32-bits of VarB

SUBBL ACC,@VarB+2 ; Sub from ACC with borrow high 32-bits of VarB

MOVL @VarC+0,P ; Store low 32-bit result into VarC

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

TBIT loc16,#bit

6-359

TBIT loc16,#bit Test Specified Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TBIT loc16,#16bit 0100 BBBB LLLL LLLL X − 1

Operands loc16#bit Addressing mode (see Chapter 5)
Immediate constant bit index from 0 to 15

Description Test the specified bit of the data value in the location pointed to by the
�loc16� addressing mode:

TC = [loc16(bit)];

The value specified for the #bit immediate operand directly corresponds
to the bit number. For example, if #bit = 0, you will access bit 0 (least
significant bit) of the addressed location; if #bit = 15, you will access bit 15
(most significant bit).

Flags and
Modes

TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
; else
; VarB.Bit6 = 0;
 TBIT @VarA,#4 ; Test bit 4 of VarA contents
 SB $10,NTC ; Branch if TC = 0
 TSET @VarB,#6 ; Set bit 6 of VarB contents
 SB $20,UNC ; Branch unconditionally
$10: ;
 TCLR @VarB,#6 ; Clear bit 6 of VarB contents
$20: ;

TBIT loc16,T

 6-360

TBIT loc16,T Test Bit Specified by Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TBIT loc16,T 0101 0110 0010 0101
0000 0000 LLLL LLLL

1 − 1

Operands loc16 T Addressing mode (see Chapter 5)
Upper 16 bits of the multiplicand register (XT)

Description Test the bit specified by the four least significant bits of the T register,
T(3:0) = 0…15 of the data value in the location pointed to by the �loc16�
addressing mode. Upper bits of the T register are ignored:

bit = 15 − T(3:0);
TC = [loc16(bit)];

A value of 15 in the T register corresponds to bit 0 (least significant bit). A
value of 0 in the T register corresponds to bit 15 (most significant bit). The
upper 12 bits of the T register are ignored.

Flags and
Modes

TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; if(VarA.VarB = 1)
; VarC.Bit6 = 1;
; else
; VarC.Bit6 = 0;
 MOV T,@VarB ; Load T with bit value in VarB
 ADD @T,#15 ; Reverse order of bit testing
 TBIT @VarA,T ; Test bit of VarA selected by VarB
 SB $10,NTC ; Branch if TC = 0
 TSET @VarB,#6 ; Set bit 6 of VarB contents
 SB $20,UNC ; Branch unconditionally
$10: ;
 TCLR @VarB,#6 ; Clear bit 6 of VarB contents
$20: ;

TCLR loc16,#bit

6-361

TCLR loc16,#bit Test and Clear Specified Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TCLR loc16,#bit 0101 0110 0000 1001
0000 BBBB LLLL LLLL

1 − 1

Operands loc16,
#bit

Addressing mode (see Chapter 5)

Immediate constant bit index from 0 to 15

Description Test the specified bit of the data value in the location pointed to by the �loc16�
addressing mode and then clear that same bit to 0:

TC = [loc16(bit)];
[loc16(bit)] = 0;

The value specified for the #bit immediate operand directly corresponds to
the bit number. For example, if #bit = 0, you will access bit 0 (least significant
bit) of the addressed location; if #bit = 15, you will access bit 15 (most
significant bit).
TCLR performs a read-modify-write operation.

Flags and
Modes

N If (loc16 = @AX) and bit 15 (MSB) of @AX is 1, then N flag is set..

Z If (loc16 = @AX) and @AX gets zeroed out, then Z flag is set.
TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
; else
; VarB.Bit6 = 0;
 TBIT @VarA,#4 ; Test bit 4 of VarA contents
 SB $10,NTC ; Branch if TC = 0
 TSET @VarB,#6 ; Set bit 6 of VarB contents
 SB $20,UNC ; Branch unconditionally
$10: ;
 TCLR @VarB,#6 ; Clear bit 6 of VarB contents
$20: ;

TEST ACC

 6-362

TEST ACC Test for Accumulator Equal to Zero

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TEST ACC 1111 1111 0101 1000 X − 1

Operands ACC Accumulator register

Description Compare the ACC register to zero and set the status flag bits accordingly:

Modify flags on (ACC − 0x00000000);

Flags and
Modes

N If bit 31 of the ACC is 1, N is set; else N is cleared.

Z If ACC is zero, Z is set; else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT in-
struction, it resets the repeat counter (RPTC) and executes only once.

Example ; Test contents of ACC and branch if zero:

 TEST ACC ; Modify flags on (ACC − 0x00000000)

 SB Zero,EQ ; Branch if zero

TRAP #VectorNumber

6-363

TRAP #VectorNumber Software Trap

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TRAP #VectorNumber 0000 0000 001C CCCC X − 8

Operands Vector
Number

CPU interrupt vector 0 to 31

Description The TRAP instruction transfers program control to the interrupt service
routine that corresponds to the vector specified in the instruction. It does
not affect the interrupt flag register (IFR) or the interrupt enable register
(IER), regardless of whether the chosen interrupt has corresponding bits in
these registers. The TRAP instruction is not affected by the interrupt global
mask bit (INTM) in status register ST1. It also not affected by the enable bits
in the IER or the debug interrupt enable register (DBGIER). Once the TRAP
instruction reaches the decode phase of the pipeline, hardware interrupts
cannot be serviced until the TRAP instruction is done executing (until the
interrupt service routine begins).
The following table indicates which interrupt vector is associated with a
chosen value for the VectorNumber operand:

Vector
Number

Interrupt
Vector

Vector
Number

Interrupt
Vector

0 RESET 16 RTOSINT
1 INT1 17 Reserved
2 INT2 18 NMI
3 INT3 19 ILLEGAL
4 INT4 20 USER1
5 INT5 21 USER2
6 INT6 22 USER3
7 INT7 23 USER4
8 INT8 24 USER5
9 INT9 25 USER6
10 INT10 26 USER7
11 INT11 27 USER8
12 INT12 28 USER9
13 INT13 29 USER10
14 INT14 30 USER11
15 DLOGINT 31 USER12

TRAP #VectorNumber

 6-364

Part of the operation involves saving pairs of 16-bit core registers onto the
stack pointed to by the SP register. Each pair of registers is saved in a single
32-bit operation. The register forming the low word of the pair is saved first
(to an even address); the register forming the high word of the pair is saved
next (to the following odd address). For example, the first value saved is the
concatenation of the T register and the status register ST0 (T:ST0). ST0 is
saved first, then T.
This instruction should not be used with vectors 1−12 when the peripheral
interrupt expansion (PIE) is enabled.

Note: The TRAP #0 instruction does not initiate a full reset. It only forces execution of the
interrupt service routine that corresponds to the RESET interrupt vector.

Flush the pipeline;
temp = PC + 1;
Fetch specified vector;
SP = SP + 1;
[SP] = T:ST0;
SP = SP + 2;
[SP] = AH:AL;
SP = SP + 2;
[SP] = PH:PL;
SP = SP + 2;
[SP] = AR1:AR0;
SP = SP + 2;
[SP] = DP:ST1;
SP = SP + 2;
[SP] = DBGSTAT:IER;
SP = SP + 2;
[SP] = temp;
INTM = 0; // disable INT1−INT14, DLOGINT, RTOSINT
DBGM = 1; // disable debug events
EALLOW = 0; // disable access to emulation registers
LOOP = 0; // clear loop flag
IDLESTAT = 0; // clear idle flag
PC = fetched vector;

Flags and
Modes

DBGM Debug events are disabled by setting the DBGM bit.

INTM Setting the INTM bit disables maskable interrupts.
EALLOW EALLOW is cleared to disable access to protected registers.
LOOP The loop flag is cleared.
IDLESTAT The idle flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

TSET loc16,#16bit

6-365

TSET loc16,#16bit Test and Set Specified Bit

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

TSET loc16,#16bit 0101 0110 0000 1101
0000 BBBB LLLL LLLL

1 − 1

Operands loc16
#bit

Addressing mode (see Chapter 5)

Immediate constant bit index from 0 to 15

Description Test the specified bit of the data value in the location pointed to by the �loc16�
addressing mode and then set the same bit to 1:

TC = [loc16(bit)];
[loc16(bit)] = 1;

The value specified for the #bit immediate operand directly corresponds to
the bit number. For example, if #bit = 0, you will access bit 0 (least significant
bit) of the addressed location; if #bit = 15, you will access bit 15 (most
significant bit).
TSET performs a read-modify-write operation.

Flags and
Modes

N If (loc16 = = @AX) and bit 15 (MSB) of @AX is 1, then N flag is set..

Z If (loc16 = = @AX) and @AX gets zeroed out, then Z flag is set.
TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
; else
; VarB.Bit6 = 0;
 TBIT @VarA,#4 ; Test bit 4 of VarA contents
 SB $10,NTC ; Branch if TC = 0
 TSET @VarB,#6 ; Set bit 6 of VarB contents
 SB $20,UNC ; Branch unconditionally
$10: ;
 TCLR @VarB,#6 ; Clear bit 6 of VarB contents
$20: ;

UOUT *(PA),loc16

 6-366

UOUT *(PA),loc16 Unprotected Output Data to I/O Port

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

UOUT *(PA),loc16 1011 0000 LLLL LLLL
CCCC CCCC CCCC CCCC

1 Y N+2

Operands *(PA)
loc16

Immediate I/O space memory address

Addressing mode (see Chapter 5)

Description Store the 16-bit value from the location pointed to by the �loc16� addressing
mode into the I/O space location pointed to by �*(PA):

IOspace[0x000:PA] = loc16;

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external
interface (XINTF), if available on a particular device, the I/O strobe signal
(XISn) is toggled during the operation. The I/O address appears on the lower
16 address lines (XA(15:0)) and the upper address lines are zeroed. The
data appears on the lower 16 data lines (XD(15:0).
Note: The UOUT operation is not pipeline protected. Therefore, if an IN instruction

immediately follows a UOUT instruction, the IN will occur before the UOUT. To be
certain of the sequence of operation, use the OUT instruction, which is pipeline
protected.
I/O space may not be implemented on all C28x devices. See the data sheet for your
particular device for details.

Flags and
Modes

None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*(PA)� I/O space address
is post-incremented by 1 during each repetition.

UOUT *(PA),loc16

6-367

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)
; IORegC = 0x0000;

IORegA .set 0x0300 ; Define IORegA address
IORegB .set 0x0301 ; Define IORegB address
IORegC .set 0x0302 ; Define IORegC address
 MOV @AL,#0 ; AL = 0
 UOUT *(IORegA),@AL ; IOspace[IORegA] = AL
 MOV @AL,#0x0400 ; AL = 0x0400
 UOUT *(IORegB),@AL ; IOspace[IORegB] = AL
 OUT *(IO-
RegC),@VarA

; IOspace[IORegC] = VarA

 IN @AL,*(IORegC) ; AL = IOspace[IORegC]
 CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)
 SB $10,NEQ ; Branch if not equal
 MOV @AL,#0 ; AL = 0
 UOUT *(IORegC),@AL ; IOspace[IORegC] = AL
$10:

XB *AL

 6-368

XB *AL C2 xLP Source-Compatible Indirect Branch

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XB *AL 0101 0110 0001 0100 1 − 7

Operands *AL Indirect program-memory addressing using register AL, can only access
high 64K of program space range (0x3F0000 to 0x3FFFFF)

Description Unconditional indirect branch by loading the low 16 bits of PC with the
contents of register AL and forcing the upper 6 bits of the PC to 0x3F:

PC = 0x3F:AL;

Note: This branch instruction can only branch to a location located in the upper 64K range of
program space (0x3F0000 to 0x3FFFFF).

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch
; value.
; This example only works for code located in upper 64K of
; program space:
SwitchTable: ; Switch address table:
 .word Switch0 ; Switch0 address
 .word Switch1 ; Switch1 address
 .
 .

 MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
 MOVZ AR0,@Switch ; AR0 = Switch index
 MOV AL,*+XAR2[AR0] ; AL = SwitchTable[Switch]
 XB *AL ; Indirect branch using AL
SwitchReturn:
 .

Switch0: ; Subroutine 0:
 .
 .
 XB SwitchReturn,UNC ; Return: branch

Switch1: ; Subroutine 1:
 .
 .
 XB SwitchReturn,UNC ; Return: branch

XB pma,*,ARPn

6-369

XB pma,*,ARPn C2xLP Source-Compatible Branch with ARP Modification

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XB pma,*,ARPn 0011 1110 0111 0nnn
CCCC CCCC CCCC CCCC

1 − 4

Operands pma 16-bit immediate program -memory address,
can only access high 64K of program space range (0x3F0000 to 0x3FFFFF)

ARPn 3-bit auxiliary register pointer (ARP0 to ARP7)

Description Unconditional branch with ARP modification by loading the low 16 bits of PC
with the 16-bit immediate value �pma� and forcing the upper 6 bits of the PC
to 0x3F. Also, change the auxiliary register pointer as specified by the
�ARPn� operand:

PC = 0x3F:pma;
ARP = n;

Note: This branch instruction can only branch to a location located in the upper 64K range of
program space (0x3F0000 to 0x3FFFFF).

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Branch to SubA and set ARP. Load ACC with pointer pointed to
; by ARP and return to. This example only works for code
; located in upper 64K of program space:
 XB SubA,*,ARP1 ; Branch to SubA with ARP pointing

; to XAR1

SubReturn:
 .

SubA: ; Subroutine A:
 MOVL ACC,* ; Load ACC with contents

; pointed to by XAR(ARP)

 XB SubReturn,UNC ; Return unconditionally

XB pma,COND

 6-370

XB pma,COND C2 xLP Source-Compatible Branch

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XB pma,COND 0101 0110 1101 COND
CCCC CCCC CCCC CCCC

1 − 7/4

Operands pma 16-bit immediate program-memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

COND Conditional codes:

COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry
Set

C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description Conditional branch. If the specified condition is true, then branch by loading
the low 16 bits of PC with the 16-bit immediate value �pma� and forcing the
upper 6 bits of the PC to 0x3F.; otherwise continue execution without
branching:

If (COND = true) PC(15:0) = pma;
If (COND = false) PC(15:0) = PC(15:0) + 2;
PC(21:16) = 0x3F;

Note: If (COND = true) then the instruction takes 7 cycles.
If (COND = false) then the instruction takes 4 cycles.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

XB pma,COND

6-371

Example ; Branch to subroutines in SwitchTable selected by Switch value.
; This example only works for code located in upper 64K of
; program space:
SwitchTable: ; Switch address table:
 .word Switch0 ; Switch0 address
 .word Switch1 ; Switch1 address
 .
 .

 MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
 MOVZ AR0,@Switch ; AR0 = Switch index
 MOV AL,*+XAR2[AR0] ; AL = SwitchTable[Switch]
 XB *AL ; Indirect branch using AL
SwitchReturn:
 .

Switch0: ; Subroutine 0:
 .
 .
 XB SwitchReturn,UNC ; Return: branch

Switch1: ; Subroutine 1:
 .
 .
 XB SwitchReturn,UNC ; Return: branch

XBANZ pma,*ind{,ARPn}

 6-372

XBANZ pma,*ind{,ARPn} C2 x LP Source-Compatible Branch If ARn Is Not Zero

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XBANZ pma,* 0101 0110 0000 1100
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*++ 0101 0110 0000 1010
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*−− 0101 0110 0000 1011
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*0++ 0101 0110 0000 1110
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*0−− 0101 0110 0000 1111
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*,ARPn 0011 1110 0011 0nnn
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*++,ARPn 0011 1110 0011 1nnn
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*−−,ARPn 0011 1110 0100 0nnn
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*0++,ARPn 0011 1110 0100 1nnn
CCCC CCCC CCCC CCCC

1 − 4/2

XBANZ pma,*0−−,ARPn 0011 1110 0101 0nnn
CCCC CCCC CCCC CCCC

1 − 4/2

Operands pma 16-bit immediate program-memory address,
can only access high 64K of program space range (0x3F0000 to 0x3FFFFF)

ARPn 3-bit auxiliary register pointer (ARP0 to ARP7)

Description If the lower 16 bits of the auxiliary register pointed to by the current auxiliary
register pointer (ARP) is not equal to 0, then a branch is taken by loading the
lower 16 bits of the PC with the 16-bit immediate �pma� value and forcing the
upper 6 bits of the PC to 0x3F. Then, the current auxiliary register, pointed to
by the ARP, is modified as specified by the indirect mode. Then,, if indicated,
the ARP pointer value is changed to point a new auxiliary register:

if(AR[ARP] != 0)
 PC = 0x3F:pma
if(*++ indirect mode) XAR[ARP] = XAR[ARP] + 1;
if(*−− indirect mode) XAR[ARP] = XAR[ARP] – 1;
if(*0++ indirect mode) XAR[ARP] = XAR[ARP] + AR0;
if(*0−− indirect mode) XAR[ARP] = XAR[ARP] − AR0;
if(ARPn specified) ARPn = n;

Note: This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). The cycle times for this operation
are:
If branch is taken, then the instruction takes 4 cycles
If branch is not taken, then the instruction takes 2 cycles

XBANZ pma,*ind{,ARPn}

6-373

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];
; This example only works for code located in upper 64K of
; program space:

 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
 MOV @AR0,#(N−1) ; Repeat loop N times
 NOP *,ARP2 ; Point to XAR2
 SETC AMODE ; Full C2XLP address mode compatible
Loop:
 MOVL ACC,*++,ARP3 ; ACC = Array1[i], point to XAR3
 MOVL *++,ACC,ARP0 ; Array2[i] = ACC, point to XAR0
 BANZ Loop,*−−,ARP2 ; Loop if AR[ARP] != 0, AR[ARP]−−,

; point to XAR2

XCALL *AL

 6-374

XCALL *AL C2 x LP Source-Compatible Function Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XCALL *AL 0101 0110 0011 0100 1 − 7

Operands *AL Indirect program-memory addressing using register AL, can only access
high 64K of program space range (0x3F0000 to 0x3FFFFF)

Description Indirect call with destination address in AL. The lower 16 bits of the current
PC address are saved onto the software stack. Then, the low 16 bits of PC is
loaded with the contents of register AL and the upper 6 bits of the PC are
loaded with 0x3F:
temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
C = 0x3F:AL;

Note: This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Call function in FuncTable selected by FuncIndex value.
; This example only works for code located in upper 64K of
; program space:
FuncTable: ; Function address table:
 .word FuncA ; FuncA address
 .word FuncB ; FuncB address
 .
 .
 MOVL XAR2,#FuncTable ; XAR2 = pointer to FuncTable
 MOVZ AR0,@FuncIndex ; AR0 = FuncTable index
 MOV AL,*+XAR2[AR0] ; AL = Table[FuncIndex]
 XCALL *AL ; Indirect call using AL
 .
 .

FuncA: ; Function A:
 .
 .
 XRETC UNC ; Return unconditionally

FuncB: ; Function B:
 .
 .
 XRETC UNC ; Return unconditionally

XCALL pma,*,ARPn

6-375

XCALL pma,*,ARPn C2 x LP Source-Compatible Function Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XCALL pma,*,ARPn 0011 1110 0110 1nnn
CCCC CCCC CCCC CCCC

1 − 4

Operands pma 16-bit immediate program-memory address,
can only access high 64K of program space range (0x3F0000 to 0x3FFFFF)

ARPn 3-bit auxiliary register pointer (ARP0 to ARP7)

Description Unconditional call with ARP modification. The lower 16 bits of the return
address are pushed onto the software stack. Then, the lower 16 bits of the
PC are loaded with the 16-bit immediate �pma� value and the upper 6 bits of
the PC are forced to 0x3F. Then, the 3-bit ARP pointer will be set to the
�ARPn� field value:

temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
PC = 0x3F:pma;
ARP = n;

Note: This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used.

Flags and
Modes

None

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Call FuncA and set ARP. Load ACC with pointer pointed to by ARP.
; This example only works for code located in upper 64K of program
; space:
 XCALL FuncA,*,ARP1 ; Call FuncA with ARP pointing to XAR1
 .

FuncA: ; Function A:
 MOVL ACC,* ; Load ACC with contents pointed to

; by XAR(ARP)
 XRETC UNC ; Return unconditionally

XCALL pma,COND

 6-376

XCALL pma,COND C2xLP Source-Compatible Function Call

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XCALL pma,COND 0101 0110 1110 COND
CCCC CCCC CCCC CCCC

1 − 7/4

Operands pma 16-bit immediate program-memory address,
can only access high 64K of program space range (0x3F0000 to 0x3FFFFF)

COND Conditional codes:
COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal
To

N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry
Set

C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To
Zero

BIO = 0

1111 UNC Unconditional −

Description Conditional call. If the specified condition is true, then the low 16 bits of the
return address is pushed onto the software stack and the low 16 bits of the
PC are loaded with the 16-bit immediate �pma� value and the upper 6 bits of
the PC are forced to 0x3F; otherwise continue execution with instruction
following the XCALL operation:

if(COND = true)
 {
 temp(21:0) = PC + 2;
 [SP] = temp(15:0);
 SP = SP + 1;
 PC = 0x3F:pma;
 }
else
 PC = PC + 2;

Note: This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used. The cycle times for this operation are:
If (COND = true) then the instruction takes 7 cycles.
If (COND = false) then the instruction takes 4 cycles.

XCALL pma,COND

6-377

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Call FuncA if VarA does not equal zero. This example only
; works for code located in upper 64K of program space:

 MOV AL,@VarA ; Load AL with VarA
 XCALL FuncA,NEQ ; Call FuncA if not equal to zero
 .
 .

FuncA: ; Function A:
 .
 .
 XRETC UNC ; Return unconditionally

XMAC P,loc16,*(pma)

 6-378

XMAC P,loc16,*(pma) C2xLP Source-compatible Multiply and Accumulate

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XMAC P,loc16,*(pma) 1000 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

1 Y N+2

Operands P Product register

loc16 Addressing mode (see Chapter 5)

*(pma) Immediate program memory address, access high 64K range of program
space only (0x3F0000 to 0x3FFFFF)

Description Add the previous product (stored in the P register), shifted as specified by the
product shift mode (PM), to the ACC register. Next, load the T register with
the content of the location pointed to by the �loc16� addressing mode. Last,
multiply the signed 16-bit content of the T register by the signed 16-bit
content of the addressed program memory location and store the 32-bit
result in the P register:

ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x3F:pma];

The C28x forces the upper 6 bits of the program memory address, specified
by the �*(pma)� addressing mode, to 0x3F when using this form of the MAC
instruction. This limits the program memory address to the high 64K of
program address space (0x3F0000 to 0x3FFFFF). On the C28x devices,
memory blocks are mapped to both program and data space (unified
memory), hence the �*(pma)� addressing mode can be used to access data
space variables that fall within its address range.

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled; and if the operation generates a positive
overflow, then the counter is incremented. If overflow mode is disabled; and if
the operation generates a negative overflow, then the counter is
decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum
positive (0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

XMAC P,loc16,*(pma)

6-379

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. The state of the Z, N, C and OVC flags
will reflect the final result. The V flag will be set if an intermediate overflow
occurs. When repeated, the program-memory address is incremented by
1 during each repetition.

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in high 64K
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
 MOVL XAR2,#X ; XAR2 = pointer to X

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #N−1 ; Repeat next instruction N times

||XMAC P,*XAR2++,*(C) ; ACC = ACC + P >> 5,
; P = *XAR2++ * *C++

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

XMACD P,loc16,*(pma)

 6-380

XMACD P,loc16,*(pma) C2xLP Source-Compatible Multiply and Accumulate With Data Move

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XMACD P,loc16,*(pma) 1010 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

1 Y N+2

Operands P Product register

loc16 Addressing mode (see Chapter 5)
Note: For this operation, register-addressing modes cannot be used. The
modes are: @ARn, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction
trap will be generated.

*(pma) Immediate program memory address, access high 64K range of program
space only (0x3F0000 to 0x3FFFFF)

Description The XMACD instruction functions in the same manner as the XMAC, with the
addition of a data move. Add the previous product (stored in the P register),
shifted as specified by the product shift mode (PM), to the ACC register. Next,
load the T register with the content of the location pointed to by the �loc16�
addressing mode. Then, multiply the signed 16-bit content of the T register by
the signed 16-bit content of the addressed program memory location and
store the 32-bit result in the P register. Last, store the content in the T register
onto the next highest memory address pointed to by �loc16� addressing
mode:

ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x3F:pma];
[loc16 + 1] = T;

The C28x forces the upper 6 bits of the program memory address, specified
by the �*(pma)� addressing mode, to 0x3F when using this form of the MAC
instruction. This limits the program memory address to the high 64K of
program address space (0x3F0000 to 0x3FFFFF). On the C28x devices,
memory blocks are mapped to both program and data space (unified
memory), therefore, the �(pma)� addressing mode can be used to access
data-space variables that fall within its address range.

Flags and
Modes

Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC If overflow mode is disabled and if the operation generates a positive
overflow, the counter is incremented. If overflow mode is disabled and if the
operation generates a negative overflow, the counter is decremented.

XMACD P,loc16,*(pma)

6-381

OVM If overflow mode bit is set, the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation
overflowed.

PM The value in the PM bits sets the shift mode for the output operation from the
product register. If the product shift value is positive (logical left shift
operation), then the low bits are zero filled. If the product shift value is
negative (arithmetic right shift operation), the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction,
then it will be executed N+1 times. The state of the Z, N, C and OVC flags
will reflect the final result. The V flag will be set if an intermediate overflow
occurs. When repeated, the program-memory address is incremented by
1 during each repetition.

Example ; Calculate FIR filter using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in high 64K
; sum = X[N−1] * C[0];
; for(i=1; i < N; i++)
; {
; sum = sum + (X[N−1−i] * C[i]) >> 5;
; X[N−i] = X[N−1−i];
; }
; X[1] = X[0];

 MOVL XAR2,#X+N ; XAR2 = point to end of X array

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 XMAC P,*−−XAR2,*(C) ; ACC = 0, P = X[N−1] * C[0]

 RPT #N−2 ; Repeat next instruction N−1 times

||XMACD P,*−−XAR2,*(C+1) ; ACC = ACC + P >> 5,
; P = X[N−1−i] * C[i],
; i++

 MOV *+XAR2[2],T ; X[1] = X[0]

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

XOR ACC,loc16

 6-382

XOR ACC,loc16 Bitwise Exclusive OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XOR ACC,loc16 1011 0111 LLLL LLLL 1 Y N+1

Operands ACC Accumulator register
loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise XOR operation on the ACC register with the
zero-extended content of the location pointed to by the �loc16� address
mode. The result is stored in the ACC register:

ACC = ACC XOR 0:[loc16];

Flags and
Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then
the negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This operation is repeatable. If the operation follows a RPT instruction,
then the XOR instruction will be executed N+1 times. The state of the Z
and N flags will reflect the final result.

Example ; Calculate the 32-bit value: VarA = VarA XOR 0:VarB

MOVL ACC,@VarA ; Load ACC with contents of VarA

XOR ACC,@VarB ; XOR ACC with contents of 0:VarB

MOVL @VarA,ACC ; Store result in VarA

XOR ACC,#16bit << #0..16

6-383

XOR ACC,#16bit << #0..16 Bitwise Exclusive OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XOR ACC,#16bit << #0..15 0011 1110 0010 SHFT
CCCC CCCC CCCC CCCC

1 − 1

XOR ACC,#16bit << #16 0101 0110 0100 1110
CCCC CCCC CCCC CCCC

1 − 1

Operands ACC Accumulator register

#16bit 16-bit immediate constant value

#0..16 Shift value (default is �<< #0� if no value specified)

Description Perform a bitwise XOR operation on the ACC register with the given 16-bit
unsigned constant value left shifted as specified. The value is zero extended
and lower order bits are zero filled before the XOR operation. The result is
stored in the ACC register:

ACC = ACC XOR (0:16bit << shift value);

Flags and
Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then
the negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT in-
struction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA XOR 0x08000000

MOVL ACC,@VarA ; Load ACC with contents of VarA

XOR ACC,#0x8000 << 12 ; XOR ACC with 0x08000000

MOVL @VarA,ACC ; Store result in VarA

XOR AX,loc16

 6-384

XOR AX,loc16 Bitwise Exclusive OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XOR AX, loc16 0111 000A LLLL LLLL X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

loc16 Addressing mode (see Chapter 5)

Description Perform a bitwise exclusive OR operation on the specified AX register (AH or
AL) and the contents of the location pointed to by the �loc16� addressing
mode. The result is stored in the specified AX register:

AX = AX XOR [loc16];

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; XOR the contents of VarA and VarB and store in VarC:

MOV AL,@VarA ; Load AL with contents of VarA

XOR AL,@VarB ; XOR AL with contents of VarB
MOV @VarC,AL ; Store result in VarC

XOR loc16, AX

6-385

XOR loc16, AX Bitwise Exclusive OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XOR loc16, AX 1111 001A LLLL LLLL X − 1

Operands loc16 Addressing mode (see Chapter 5)

AX Accumulator high (AH) or accumulator low (AL) register

Description Perform a bitwise exclusive OR operation on the 16-bit contents of location
pointed to by the �loc16� addressing mode and the specified AX register (AH
or AL). The result is stored in the location pointed to by �loc16�:

[loc16] = [loc16] XOR AX;

This instruction performs a read-modify-write operation.

Flags and
Modes

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1,
then the negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; XOR the contents of VarA with VarB and store in VarB:

MOV AL,@VarA ; Load AL with contents of VarA

XOR @VarB,AL ; VarB = VarB XOR AL

XOR loc16,#16bit

 6-386

XOR loc16,#16bit Bitwise Exclusive OR

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XOR loc16,#16bit 0001 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

X − 1

Operands loc16 Addressing mode (see Chapter 5)

#16bit 16-bit immediate constant value

Description Perform a bitwise XOR operation on the content of the location pointed to by
the �loc16� addressing mode and the 16-bit immediate constant value. The
result is stored in the location pointed to by �loc16�:

[loc16] = [loc16] XOR 16bit;

Smart Encoding:
If loc16 = AH or AL and #16bit is an 8-bit number, then the assembler will
encode this instruction as XO�RB AX,#8bt. To override this encoding, use
the XORW AX,#16bit instruction alias.

Flags and
Modes

N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.

Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Toggle Bits 2 and 14 of VarA:
; VarA = VarA XOR #(1 << 2 | 1 << 14)

XOR @VarA,#(1 << 2 | 1 << 14) ; Toggle bits 2 and 11 of VarA

XORB AX, #8bit

6-387

XORB AX, #8bit Bitwise Exclusive OR 8-bit Value

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XORB AX, #8bit 1111 000A CCCC CCCC X − 1

Operands AX Accumulator high (AH) or accumulator low (AL) register

#8bit 8-bit immediate constant value

Description Perform a bitwise exclusive OR operation on the specified AX register and
the 8-bit unsigned immediate constant zero extended. The result is stored in
the AX register:

AX = AX XOR 0x00:8bit;

Flags and
Modes

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Toggle bit 7 of VarA and store result in VarB:

MOV AL,@VarA ; Load AL with contents of VarA

XORB AL,#0x80 ; XOR contents of AL with 0x0080
MOV @VarB,AL ; Store result in VarB

XPREAD loc16, *(pma)

 6-388

XPREAD loc16, *(pma) C2xLP Source-Compatible Program Read

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XPREAD loc16,*(pma) 1010 1100 MMMM MMMM
LLLL LLLL LLLL LLLL

1 Y N+2

Operands loc16 Addressing mode (see Chapter 5)

*(pma) Immediate program-memory address, can only access high 64K of program
space range (0x3F0000 to 0x3FFFFF)

Description Load the 16-bit data-memory location pointed to by the �loc16� addressing
mode with the 16-bit content of the program-memory location pointed to by
�*(pma)� addressing mode:

[loc16] = Prog[0x3F:pma];

The C28x forces the upper 6 bits of the program memory address, specified
by the �*(pma)� addressing mode, to 0x3F when using this form of the
XPREAD instruction. This limits the program memory address to the high
64K of program address space (0x3F0000 to 0x3FFFFF). On the C28x
devices, memory blocks are mapped to both program and data space
(unified memory), hence the �*(pma)� addressing mode can be used to
access data space variables that fall within its address range.

Flags and
Modes

N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.

Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is
cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*(pma)�
program-memory address is copied to an internal shadow register and the
address is post-incremented by 1 during each repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

 MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||XPREAD *XAR2++,*(Array1) ; Array2[i] = Array1[i],

; i++

XPREAD loc16, *AL

6-389

XPREAD loc16, *AL C2xLP Source-Compatible Program Read

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XPREAD loc16,*AL 0101 0110 0011 1100
0000 0000 LLLL LLLL

1 Y N+4

Operands loc16 Addressing mode (see Chapter 5)

*AL Indirect program-memory addressing using register AL,
can only access high 64K of program space range (0x3F0000 to 0x3FFFFF)

Description Load the 16-bit data-memory location pointed to by the �loc16� addressing
mode with the 16-bit content of the program-memory location pointed to by
�*AL� addressing mode:

[loc16] = Prog[0x3F:AL];

The C28x forces the upper 6 bits of the program memory address, specified
by the �*AL� addressing mode, to 0x3F when using this form of the XPREAD
instruction. This limits the program memory address to the high 64K of
program address space (0x3F0000 to 0x3FFFFF). On the C28x devices,
memory blocks are mapped to both program and data space (unified
memory), hence the �*AL� addressing mode can be used to access data
space variables that fall within its address range.

Flags and
Modes

N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.

Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is
cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*AL� program-memory
address is copied to an internal shadow register and the address is
post-incremented by 1 during each repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];
 MOV @AL,#Array1 ; AL = pointer to Array1
 MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||XPREAD *XAR2++,*AL ; Array2[i] = Array1[i],

; i++

XPWRITE *A,loc16

 6-390

XPWRITE *A,loc16 C2xLP Source-Compatible Program Write

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XPWRITE *AL,loc16 0101 0110 0011 1101
0000 0000 LLLL LLLL

1 Y N+4

Operands *AL Indirect program-memory addressing using register AL, can only access
high 64K of program space range (0x3F0000 to 0x3FFFFF)

loc16 Addressing mode (see Chapter 5)

Description Load the 16-bit program-memory location pointed to by �*AL� addressing
mode with the 16-bit content of the location pointed to by the �loc16�
addressing mode:

Prog[0x3F:AL] = [loc16];

The C28x forces the upper 6 bits of the program memory address, specified
by the �*AL� addressing mode, to 0x3F when using this form of the XPWRITE
instruction. This limits the program memory address to the high 64K of
program address space (0x3F0000 to 0x3FFFFF). On the C28x devices,
memory blocks are mapped to both program and data space (unified
memory), hence the �*AL� addressing mode can be used to access data
space variables that fall within its address range.

Flags and
Modes

None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then
it will be executed N+1 times. When repeated, the �*AL� program-memory
address is copied to an internal shadow register and the address is
post-incremented by 1 during each repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in data space
; int16 Array2[N]; // Located in high 64K of program space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

 MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
 MOV @AL,#Array2 ; AL = pointer to Array2
 RPT #(N−1) ; Repeat next instruction N times
||XPWRITE *AL,*XAR2++ ; Array2[i] = Array1[i],

; i++

XRET

6-391

XRET C2xLP Source-Compatible Return

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XRET 0101 0110 1111 1111 1 − 7
Note: XRET is an alias for RETC unconditional.

Operands None

Description Return conditionally. If the specified condition is true, a 16-bit value is
popped from the stack and stored into the low 16 bits of the PC while the
upper 6 bits of the PC are forced to 0x3F; Otherwise, execution continues
with the instruction following the XRETC operation:

if(COND = true)
 SP = SP − 1;
 PC = 0x3F:[SP];

Note: This instruction can transfer program control only to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRET instruction must be used.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Return from FuncA if VarA does not equal zero, else set VarB
; to zero and return. This example only works for code located
; in upper 64K of program space:
 XCALL FuncA ; Call FuncA
 .

FuncA: ; Function A:
 .
 .
 .
 .
 MOV AL,@VarA ; Load AL with contents of VarA
 XRET NEQ ; Return if VarA does not equal 0
 MOV @VarA,#0 ; Store 0 into VarB
 XRETC UNC ; Return unconditionally

XRETC COND

 6-392

XRETC COND C2xLP Source-Compatible Conditional Return

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

XRETC COND 0101 0110 1111 COND 1 − 4/7

Operands COND Conditional codes:
COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z = 0

0001 EQ Equal To Z = 1

0010 GT Greater Then Z = 0 AND N = 0

0011 GEQ Greater Then Or Equal To N = 0

0100 LT Less Then N = 1

0101 LEQ Less Then Or Equal To Z = 1 OR N = 1

0110 HI Higher C = 1 AND Z = 0

0111 HIS, C Higher Or Same, Carry Set C = 1

1000 LO, NC Lower, Carry Clear C = 0

1001 LOS Lower Or Same C = 0 OR Z = 1

1010 NOV No Overflow V = 0

1011 OV Overflow V = 1

1100 NTC Test Bit Not Set TC = 0

1101 TC Test Bit Set TC = 1

1110 NBIO BIO Input Equal To Zero BIO = 0

1111 UNC Unconditional −

Description Return conditionally. If the specified condition is true, a 16-bit value is
popped from the stack and stored into the low 16 bits of the PC while the
upper 6 bits of the PC are forced to 0x3F; Otherwise, execution continues
with the instruction following the XRETC operation:

if(COND = true)
 {
 SP = SP − 1;
 PC = 0x3F:[SP];
 }
else
 PC = PC + 1;

Note: This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used. The cycle times for this operation are:
If (COND = true) then the instruction takes 7 cycles.
If (COND = false) then the instruction takes 4 cycles.

Flags and
Modes

V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

XRETC COND

6-393

Example ; Return from FuncA if VarA does not equal zero, else set VarB
; to zero and return. This example only works for code located
; in upper 64K of program space:
 XCALL FuncA ; Call FuncA
 .

FuncA: ; Function A:
 .
 .
 .
 .
 MOV AL,@VarA ; Load AL with contents of VarA
 XRETC NEQ ; Return if VarA does not equal 0
 MOV @VarA,#0 ; Store 0 into VarB
 XRETC UNC ; Return unconditionally

ZALR ACC,loc16

 6-394

ZALR ACC,loc16 Zero AL and Load AH With Rounding

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ZALR ACC,loc16 0101 0110 0001 0011
0000 0000 LLLL LLLL

1 − 1

Operands ACC Accumulator register

loc16 Addressing mode (see Chapter 5)

Description Load low accumulator (AL) with the value 0x8000 and load high accumulator
(AH) with the 16-bit contents pointed to by the �loc16� addressing mode.

AH = [loc16];
AL = 0x8000;

Flags and
Modes

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then
the negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the
operation generates ACC = 0; otherwise it is cleared

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y = round(M*X << 1 + B << 16)
; Y, M, X, B are all Q15 numbers

SPM +1 ; Set product shift mode to << 1

MOV T,@M ; T = M (Q15)

MPY P,T,@X ; P = M * X (Q30)

ZALR ACC,@B ; ACC = B << 16 + 0x8000 (Q31)

ADDL ACC,P << PM ; Add P to ACC with shift (Q31)

MOV @Y,AH ; Store AH into Y (Q15)

ZAP OVC

6-395

ZAP OVC Clear Overflow Counter

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ZAP OVC 0101 0110 0101 1100 1 − 1

Operands OVC overflow counter bits in Status Register 0 (ST0)

Description Clear the overflow counter (OVC) bits in Status Register 0 (ST0).

Flags and
Modes

OVC The 6-bit overflow counter bits (OVC) are cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate: VarD = sat(VarA + VarB + VarC)
ZAP OVC ; Zero overflow counter
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
ADDL ACC,@VarC ; ACC = ACC + VarC
SAT ACC ; Saturate if OVC != 0
MOVL @VarD,ACC ; Store saturated result into VarD

ZAPA

 6-396

ZAPA Zero Accumulator and P Register

SYNTAX OPTIONS OPCODE OBJMODE RPT CYC

ZAPA 0101 0110 0011 0011 1 − 1

Operands None

Description Zero the ACC and P registers as well as the overflow counter (OVC):

ACC = 0;
P = 0;
OVC = 0;

Flags and
Modes

N The N bit is set.

Z The Z bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT
instruction, it resets the repeat counter (RPTC) and executes only once.

Example ; Calculate sum of product using 32-bit multiply and retain
; high result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in low 4M)
; int32 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + ((X[i] * C[i]) >> 32) >> 5;

 MOVL XAR2,#X ; XAR2 = pointer to X

 MOVL XAR7,#C ; XAR7 = pointer to C

 SPM −5 ; Set product shift to ”>> 5”

 ZAPA ; Zero ACC, P, OVC

 RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,

; P = (X[i] * C[i]) >> 32

; i++

 ADDL ACC,P << PM ; Perform final accumulate

 MOVL @sum,ACC ; Store final result into sum

7-1Emulation Features

Emulation Features

The CPU in the C28x contains hardware extensions for advanced emulation
features that can assist you in the development of your application system
(software and hardware). This chapter describes the emulation features that
are available on all C28x devices using only the JTAG port (with TI exten-
sions).

For more information about instructions shown in examples in this chapter,
see Chapter 6, Assembly Language Instructions.

Topic Page

7.1 Overview of Emulation Features 7-2.

7.2 Debug Interface 7-3.

7.3 Debug Terminology 7-6.

7.4 Execution Control Modes 7-7.

7.5 Aborting Interrupts With the ABORTI Instruction 7-15.

7.6 DT-DMA Mechanism 7-16.

7.7 Analysis Breakpoints, Watchpoints, and Counter(s) 7-19.

7.8 Data Logging 7-23.

7.9 Sharing Analysis Resources 7-30.

7.10 Diagnostics and Recovery 7-31.

Chapter 7

Overview of Emulation Features

 7-2

7.1 Overview of Emulation Features

The CPU�s hardware extensions for advanced emulation features provide
simple, inexpensive, and speed-independent access to the CPU for sophisti-
cated debugging and economical system development, without requiring the
costly cabling and access to processor pins required by traditional emulator
systems. It provides this access without intruding on system resources.

The on-chip development interface provides:

� Minimally intrusive access to internal and external memory

� Minimally intrusive access to CPU and peripheral registers

� Control of the execution of background code while continuing to service
time-critical interrupts

� Break on a software breakpoint instruction (instruction replacement)

� Break on a specified program or data access without requiring instruc-
tion replacement (accomplished using bus comparators)

� Break on external attention request from debug host or additional
hardware

� Break after the execution of a single instruction (single-stepping)

� Control over the execution of code from device power up

� Nonintrusive determination of device status

� Detection of a system reset, emulation/test-logic reset, or power-
down occurrence

� Detection of the absence of a system clock or memory-ready signal

� Determination of whether global interrupts are enabled

� Determination of why debug accesses might be blocked

� Rapid transfer of memory contents between the device and a host (data
logging)

� A cycle counter for performance benchmarking. With a 100-MHz cycle
clock, the counter can benchmark actions up to 3 hours in duration.

Debug Interface

7-3Emulation Features

7.2 Debug Interface

The target-level TI debug interface uses the five standard IEEE 1149.1 (JTAG)
signals (TRST, TCK, TMS, TDI, and TDO) and the two TI extensions (EMU0
and EMU1). Figure 7−1 shows the 14-pin JTAG header that is used to inter-
face the target to a scan controller, and Table 7−1 (page 7-4) defines the pins.

As shown in the figure, the header requires more than the five JTAG signals
and the TI extensions. It also requires a test clock return signal (TCK_RET),
the target supply (VCC) and ground (GND). TCK_RET is a test clock out of the
scan controller and into the target system. The target system uses TCK_RET
if it does not supply its own test clock (in which case TCK would simply not be
used). In many target systems, TCK_RET is simply connected to TCK and
used as the test clock.

Figure 7−1. JTAG Header to Interface a Target to the Scan Controller

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header dimensions:
Pin-to-pin spacing: 0.100 in. (X,Y)
Pin width: 0.025-in. square post
Pin length: 0.235-in. nominal

PD (VCC) 5 6 No pin (key)

EMU0 13 14 EMU1

Debug Interface

 7-4

Table 7−1. 14-Pin Header Signal Descriptions

Signal Description
Emulator

State�
Target
State�

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

GND Ground

PD (VCC) Presence detect. Indicates that the emulation
cable is connected and that the target is pow-
ered up. PD should be tied to VCC in the target
system.

I O

TCK Test clock. TCK is a clock source from the
emulation cable pod. This signal can be used
to drive the system test clock.

O I

TCK_RET Test clock return. Test clock input to the emu-
lator. Can be a buffered or unbuffered version
of TCK.

I O

TDI Test data input O I

TDO Test data output I O

TMS Test mode select O I

TRST� Test reset O I

� I = input; O = output
� Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

The state of the TRST, EMU0, and EMU1 signals at device power up deter-
mine the operating mode of the device. The operating mode takes effect as
soon as the device has sufficient power to operate. Should the TRST signal
rise, the EMU0 and EMU1 signals are sampled on its rising edge and the\at
operating mode is latched. Some of these modes are reserved for test pur-
poses, but those that can be of use in a target system are detailed in Table 7−2.
A target system is not required to support any mode other than normal mode.

Debug Interface

7-5Emulation Features

Table 7−2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1

TRST EMU1 EMU0 Device Operating Mode
JTAG Cable
Active?

Low Low Low Slave mode. Disables the CPU and
memory portions of the C28x.
Another processor treats the C28x
as a peripheral.

No

Low Low High Reserved for testing No

Low High Low Wait-in-reset mode. Prolongs the
device�s reset until released by ex-
ternal means. This allows a C28x to
power up in reset, provided external
hardware holds EMU0 low only
while power-up reset is active.

Yes

Low High High Normal mode with emulation dis-
abled. This is the setting that should
be used on target systems when a
scan controller (such as the
XDS510) is not attached. TRST will
be pulled down and EMU1 and
EMU0 pulled up within the C28x;
this is the default mode.

No

High Low or High Low or High Normal mode with emulation en-
abled. This is the setting to use on
target systems when a scan control-
ler is attached (the scan controller
will control TRST). TRST should not
be high during device power-up.

Yes

Debug Terminology

 7-6

7.3 Debug Terminology

The following definitions will help you to understand the information in the rest
of this chapter:

� Background code. The body of code that can be halted during debug-
ging because it is not time-critical.

� Foreground code. The code of time-critical interrupt service routines,
which are executed even when background code is halted.

� Debug-halt state. The state in which the device does not execute back-
ground code.

� Time-critical interrupt. An interrupt that must be serviced even when
background code is halted. For example, a time-critical interrupt might
service a motor controller or a high-speed timer.

� Debug event. An action, such as the decoding of a software breakpoint
instruction, the occurrence of an analysis breakpoint/watchpoint, or a re-
quest from a host processor that can result in special debug behavior,
such as halting the device or pulsing one of the signals EMU0 or EMU1.

� Break event. A debug event that causes the device to enter the debug-
halt state.

Execution Control Modes

7-7Emulation Features

7.4 Execution Control Modes
The C28x supports two debug execution control modes:

� Stop mode
� Real-time mode

Stop mode provides complete control of program execution, allowing for the
disabling of all interrupts. Real-time mode allows time-critical interrupt service
routines to be performed while execution of other code is halted. Both execu-
tion modes can suspend program execution at break events, such as occur-
rences of software breakpoint instructions or specified program-space or
data-space accesses.

7.4.1 Stop Mode

Stop mode causes break events, such as software breakpoints and analysis
watchpoints, to suspend program execution at the next interrupt boundary
(which is usually identical to the next instruction boundary). When execution
is suspended, all interrupts (including NMI and RS) are ignored until the CPU
receives a directive to run code again. In stop mode, the CPU can operate in
the following execution states:

� Debug-halt state. This state is entered through a break event, such as
the decoding of a software breakpoint instruction or the occurrence of an
analysis breakpoint/watchpoint. This state can also be entered by a re-
quest from the host processor. In the stop mode debug-halt state, the CPU
is halted. You can place the device into one of the other two states by giv-
ing the appropriate command to the debugger.

The CPU cannot service any interrupts, including NMI and RS (reset).
When multiple instances of the same interrupt occurs without the first
instance being serviced, the later instances are lost.

� Single-instruction state. This state is entered when you tell the debug-
ger to execute a single instruction by using a RUN 1 command or a
STEP 1 command. The CPU executes the single instruction pointed to by
the PC and then returns to the debug-halt state (it executes from one inter-
rupt boundary to the next). The CPU is only in the single-instruction state
until that single instruction is done.

If an interrupt occurs in this state, the command used to enter this state deter-
mines whether that interrupt can be serviced. If a RUN 1 command was
used, the CPU can service the interrupt. If a STEP 1 command was used, the
CPU cannot, even if the interrupt is NMI or RS.

� Run state. This state is entered when you use a run command from the
debugger interface. The CPU executes instructions until a debugger com-
mand or a debug event returns the CPU to the debug-halt state.

Execution Control Modes

 7-8

The CPU can service all interrupts in this state. When an interrupt occurs
simultaneously with a debug event, the debug event has priority; however,
if interrupt processing began before the debug event occurred, the debug
event cannot be processed until the interrupt service routine begins.

Figure 7−2 illustrates the relationship among the three states. Notice that the
C28x cannot pass directly between the single-instruction and run states. No-
tice also that the CPU can be observed only in the debug-halt state. In practical
terms, this means the contents of CPU registers and memory are not updated
in the debugger display in the single-instruction state or the run state. Mask-
able interrupts occurring in any state are latched in the interrupt flag register
(IFR).

Figure 7−2. Stop Mode Execution States

Single-instruction state Run state

Debugger command

Debugger command

After executing
one instruction

Debugger command,
breakpoint, or analysis stop

Debug-halt state

Can service an interrupt
if RUN 1 used�

Cannot observe CPU

Can service interrupts
Cannot observe CPU

Cannot service interrupts
Can observe CPU

� If you use a RUN 1 command to execute a single instruction, an interrupt can be serviced in the single-instruction state. If you use
a STEP 1 command for the same purpose, an interrupt cannot be serviced.

Execution Control Modes

7-9Emulation Features

7.4.2 Real-Time Mode

Real-time mode provides for the debugging of code that interacts with inter-
rupts that must not be disabled. Real-time mode allows you to suspend back-
ground code at break events while continuing to execute time-critical interrupt
service routines (also referred to as foreground code). In real-time mode, the
CPU can operate in the following execution states:

� Debug-halt state. This state is entered through a break event such as the
decoding of a software breakpoint instruction or the occurrence of an anal-
ysis breakpoint/watchpoint. This state can also be enter by a request from
the host processor. You can place the device into one of the other two
states by giving the appropriate command to the debugger.

In this state, only time-critical interrupts can be serviced. No other code can
be executed. Maskable interrupts are considered time-critical if they are en-
abled in the debug interrupt enable register (DBGIER). If they are also en-
abled in the interrupt enable register (IER), they are serviced. The interrupt
global mask bit (INTM) is ignored. NMI and RS are also considered time-criti-
cal, and are always serviced once requested. It is possible for multiple inter-
rupts to occur and be serviced while the device is in the debug-halt state.

Suspending execution adds only one cycle to interrupt latency. When the
C28x returns from a time-critical ISR, it reenters the debug-halt state.

If a CPU reset occurs (initiated by RS), the device runs the corresponding
interrupt service routine until that routine clears the debug enable mask bit
(DBGM) in status register ST1. When a reset occurs, DBGM is set, disab-
ling debug events. To reenable debug events, the interrupt service routine
must clear DBGM. Only then will the outstanding emulation-suspend con-
dition be recognized.

Note:

Should a time-critical interrupt occur in real-time mode at the precise mo-
ment that the debugger receives a RUN command, the time-critical interrupt
will be taken and serviced in its entirety before the CPU changes states.

� Single-instruction state. This state is entered when you you tell the de-
bugger to execute a single instruction by using a RUN 1 command or a
STEP 1 command. The CPU executes the single instruction pointed to by
the PC and then returns to the debug-halt state (it executes from one inter-
rupt boundary to the next).

If an interrupt occurs in this state, the command used to enter this state deter-
mines whether that interrupt can be serviced. If a RUN 1 command was

Execution Control Modes

 7-10

used, the CPU can service the interrupt. If a STEP 1 command was used, the
CPU cannot, even if the interrupt is NMI or RS. In real-time mode, if the
DBGM bit is 1 (debug events are disabled), a RUN 1 or STEP 1 command
forces continuous execution of instructions until DBGM is cleared.

Note: If you single-step an instruction in real−time emulation mode and that
instruction sets DBGM, the CPU continues to execute instructions until DBGM
is cleared. If you want to single-step through a non-time-critical interrupt ser-
vice routine (ISR), you must initiate a CLRC DBGM instruction at the beginning
of the ISR. Once you clear DBGM, you can single-step or place breakpoints.

� Run state. This state is entered when you use a run command from the
debugger interface. The CPU executes instructions until a debugger com-
mand or a debug event returns the CPU to the debug-halt state.

The CPU can service all interrupts in this state. When an interrupt occurs
simultaneously with a debug event, the debug event has priority; however,
if interrupt processing began before the debug event occurred, the debug
event cannot be processed until the interrupt service routine begins.

Figure 7−3 illustrates the relationship among the three states. Notice that the
C28x cannot pass directly between the single-instruction and run states. No-
tice also that the CPU can be observed in the debug-halt state and in the run
state. In the single-instruction state, the contents of CPU registers and
memory are not updated in the debugger display. In the debug-halt and run
states, register and memory values are updated unless DBGM = 1. Maskable
interrupts occurring in any state are latched in the interrupt flag register (IFR).

Figure 7−3. Real-time Mode Execution States

Single-instruction state Run state

Debugger command

Debugger command

After executing
one instruction

Debugger command,
breakpoint, or analysis stop

Debug-halt state

Cannot observe CPU

Can service interrupts
Can observe CPU

Can service time-critical interrupts
(including NMI and RS)

Can observe CPU

Can service an interrupt
if RUN 1 used�

� If you use a RUN 1 command to execute a single instruction, an interrupt can be serviced in the single-instruction state. If you use
a STEP 1 command for the same purpose, an interrupt cannot be serviced.

Execution Control Modes

7-11Emulation Features

Caution about breakpoints within time-critical interrupt service routines

Do not use breakpoints within time-critical interrupt service routines. They will
cause the device to enter the debug-halt state, just as if the breakpoint were
located in normal code. Once in the debug-halt state, the CPU services re-
quests for RS, NMI, and those interrupts enabled in the DBGIER and the IER.

After approving a maskable interrupt, the CPU disables the interrupt in the
IER. This prevents subsequent occurrences of the interrupt from being ser-
viced until the IER is restored by a return from interrupt (IRET) instruction or
until the interrupt is deliberately re-enabled in the interrupt service routine
(ISR). Do not reenable that interrupt�s IER bit while using breakpoints within
the ISR. If you do so and the interrupt is triggered again, the CPU performs
a new context save and restarts the interrupt service routine.

7.4.3 Summary of Stop Mode and Real-Time Mode

Figure 7−4 (page 7-12) is a graphical summary of the differences between the
execution states of stop mode and real-time mode. Table 7−3 (page 7-13) is
a summary of how interrupts are handled in each of the states of stop mode
and real-time mode.

Execution Control Modes

 7-12

Figure 7−4. Stop Mode Versus Real-Time Mode

Single-instruction state Run state

Can service interrupts
Cannot observe CPU

Can observe CPU
Cannot service interrupts

Cannot observe CPU

Debugger command

Debugger command

After executing
one instruction

Stop mode

Real-time mode
Debug-halt state
Can observe CPU

Can service time-critical interrupts

Cannot observe CPU

Debugger command

Run state

Can service interrupts
Can observe CPU

Debugger command,
breakpoint, or analysis stop

After executing
one instruction

Debugger command

Debugger command

Debugger command

Debugger command,
breakpoint, or analysis stop

(including NMI and RS)

Debug-halt state

Single-instruction state

Can service an interrupt
if RUN 1 used�

Can service an interrupt
if RUN 1 used�

� If you use a RUN 1 debugger command to execute a single instruction, an interrupt can be serviced in the single-instruction state.
If you use a STEP 1 debugger command for the same purpose, an interrupt cannot be serviced.

Execution Control Modes

7-13Emulation Features

Table 7−3. Interrupt Handling Information By Mode and State

Mode State If This Interrupt Occurs ... The Interrupt Is ...

Stop Debug-halt RS Not serviced

NMI Not serviced

Maskable interrupt Latched in IFR but not serviced

Single-instruction RS If running: Serviced
If stepping: Not serviced

NMI If running: Serviced
If stepping: Not serviced

Maskable interrupt If running: Serviced
If stepping: Latched in IFR but
not serviced

Run RS Serviced

NMI Serviced

Maskable interrupt Serviced

Real-time Debug-halt RS Serviced

NMI Serviced

Maskable interrupt If time-critical: Serviced.
If not time-critical: Latched in IFR
but not serviced

Single-instruction RS If running: Serviced
If stepping: Not serviced

NMI If running: Serviced
If stepping: Not serviced

Maskable interrupt If running: Serviced
If stepping: Latched in IFR but
not serviced

Run RS Serviced

NMI Serviced

Maskable interrupt Serviced

Execution Control Modes

 7-14

Note:

Unless you are using a real-time operating system, do not enable the real-
time operating system interrupt (RTOSINT). RTOSINT is completely dis-
abled when bit 15 in the IER is 0 and bit 15 in the DBGIER is 0.

Aborting Interrupts With the ABORTI Instruction

7-15Emulation Features

7.5 Aborting Interrupts With the ABORTI Instruction

Generally, a program uses the IRET instruction to return from an interrupt. The
IRET instruction restores all the values that were saved to the stack during the
automatic context save. In restoring status register ST1 and the debug status
register (DBGSTAT), IRET restores the debug context that was present be-
fore the interrupt.

In some target applications, you might have interrupts that must not be re-
turned from by the IRET instruction. Not using IRET can cause a problem for
the emulation logic, because the emulation logic assumes the original debug
context will be restored. The abort interrupt (ABORTI) instruction is provided
as a means to indicate that the debug context will not be restored and the de-
bug logic needs to be reset to its default state. As part of its operation, the
ABORTI instruction:

� Sets the DBGM bit in ST1. This disables debug events.

� Modifies select bits in DBGSTAT. The effect is a resetting of the debug
context. If the CPU was in the debug-halt state before the interrupt oc-
curred, the CPU does not halt when the interrupt is aborted. Teh CPU au-
tomatically switches to the run state. If you want to abort an interrupt, but
keep the CPU halted, insert a breakpoint after the ABORTI instruction.

The ABORTI instruction does not modify the DBGIER, the IER, the INTM bit,
or any analysis registers (for example, registers used for breakpoints, watch-
points, and data logging).

DT-DMA Mechanism

 7-16

7.6 DT-DMA Mechanism

The debug-and-test direct memory access (DT-DMA) mechanism provides
access to memory, CPU registers, and memory-mapped registers (such as
emulation registers and peripheral registers) without direct CPU intervention.
DT-DMAs intrude on CPU time; however, you can block them by setting the
debug enable mask bit (DBGM) in ST1.

Because the DT-DMA mechanism uses the same memory-access mecha-
nism as the CPU, any read or write access that the CPU can perform in a single
operation can be done by a DT-DMA. The DT-DMA mechanism presents an
address (and data, in the case of a write) to the CPU, which performs the op-
eration during an unused bus cycle (referred to as a hole). Once the CPU has
obtained the desired data, it is presented back to the DT-DMA mechanism.
The DT-DMA mechanism can operate in the following modes:

� Nonpreemptive mode.The DT-DMA mechanism waits for a hole on the
desired memory buses. During the hole, the DT-DMA mechanism uses
them to perform its read or write operation. These holes occur naturally
while the CPU is waiting for newly fetched instructions, such as during a
branch.

� Preemptive mode. In preemptive mode, the DT-DMA mechanism forces
the creation of a hole and performs the access.

Nonpreemptive accesses to zero-wait-state memory take no cycles away
from the CPU. If wait-stated memory is accessed, the pipeline stalls during
each wait state, just as a normal memory access would cause a stall. In real-
time mode, DT-DMAs to program memory cannot occur when application
code is being run from memory with more than one wait state.

DT-DMAs can be polite or rude.

� Polite accesses. Polite DT-DMAs require that DBGM = 0.
� Rude accesses. Rude DT-DMAs ignore DBGM.

Figure 7−5 summarizes the process for handling a request from the DT-DMA
mechanism.

DT-DMA Mechanism

7-17Emulation Features

Figure 7−5. Process for Handling a DT-DMA Request

polite or rude?
Request

DBGM = 0?

nonpreemptive or
Mode

Access performed

Wait for hole

Rude

Access denied

Force a hole

preemptive?

DT-DMA mechanism

Polite

No

Yes

Preemptive

Nonpreemptive

requests access

Some key concepts of the DT-DMA mechanism are:

� Even if DBGM = 0, when the mechanism is in nonpreemptive mode, it
must wait for a hole. This minimizes the intrusiveness of the debug access
on a system.

� Real-time-mode accesses are typically polite (although there may be rea-
sons, such as error recovery, to perform rude accesses in real-time
mode). If the DBGM bit is permanently set to 1 due to a coding bug but
you need to regain debug control, use rude accesses, which ignore the
state of DBGM.

� In stop mode, DBGM is ignored, and the DT-DMA mode is set to preemp-
tive. This ensures that you can gain visibility to and control of your system
if an otherwise unrecoverable error occurs (for example, if ST1 is changed
to an undesired value due to stack corruption).

DT-DMA Mechanism

 7-18

� The DT-DMA mechanism does not cause a program-flow discontinuity. No
interrupt-like save/restore is performed. When a preemptive DT-DMA forces
a hole, no program address counters increment during that cycle.

� A DT-DMA request awakens the device from the idle state (initiated by the
IDLE instruction). However, unlike returning from an interrupt, the CPU re-
turns to the idle state upon completion of the DT-DMA.

Note:

The information shown on the debugger screen is gathered at different times
from the target; therefore, it does not represent a snapshot of the target
state, but rather a composite. It also takes the host time to process and dis-
play the data. The data does not correspond to the current target state, but
rather, the target state as of a few milliseconds ago.

Analysis Breakpoints, Watchpoints, and Counter(s)

7-19Emulation Features

7.7 Analysis Breakpoints, Watchpoints, and Counter(s)

All C28x devices include two analysis units AU1 and AU2. Analysis Unit 1
(AU1) counts events or monitors address buses. Analysis Unit 2 (AU2) moni-
tors address and data buses. You can configure these two analysis units as
analysis breakpoints or watchpoints. In addition, AU1 can be configured as a
benchmark counter or event counter.

This section describes thee types of analysis features: analysis breakpoints,
watchpoints, and counters. Typical analysis unit configurations are presented
in section 7.7.4. Data logging is described in section 7.8.

7.7.1 Analysis Breakpoints

An analysis breakpoint is sometimes called a hardware breakpoint, because
it acts like a software breakpoint instruction (in this case, the ESTOP0 instruc-
tion) but does not require a modification to the application software. An analy-
sis breakpoint triggers a debug event when an instruction at a breakpoint ad-
dress would have entered the decode 2 phase of the pipeline; this halts the
CPU before the instruction is executed. A bus comparator watches the pro-
gram address bus, comparing its contents against a reference address and
a bit mask value.

Consider the following example. If a hardware breakpoint is set at T0, the CPU
stops after returning from the T1 subroutine, with the instruction counter (IC)
pointing to T0.

NOP
CALL T1

T0: MOVB AL, #0x00
SB TIMINGS, UNC

T1: NOP
RET

T2: NOP

Hardware breakpoints allow masking of address bits. For example, a hard-
ware breakpoint could be placed on the address range 00 020016−00 02FF16
by specifying the following mask address, where the eight LSBs are don�t
cares:

00 0000 0000 0010 XXXX XXXX2

7.7.2 Watchpoints

A hardware watchpoint triggers a debug event when either an address or an
address and data match a compare value. The address portion is compared
against a reference address and bit mask, and the data portion is compared
against a reference data value and a bit mask.

Analysis Breakpoints, Watchpoints, and Counter(s)

 7-20

When comparing two addresses, you can set two watchpoints. When comparing
an address and a data value, you can set only one watchpoint. When performing
a read watchpoint, the address is available a few cycles earlier than the data; the
watchpoint logic accounts for this.

The point where execution stops depends on whether the watchpoint was a
read or write watchpoint, and whether it was an address or an address/data
read watchpoint. In the following example, a read address watchpoint occurs
when the address X is accessed, and the CPU stops with the instruction count-
er (IC) pointing three instructions after that point:

MOV AR4,#X
MOV AL,*+AR4[0] ; Data read
nop
nop
nop ; The IC will point here

For a read watchpoint that requires both an address and data match, the CPU
stops with the IC pointing six instructions after that point:

MOV AR4,#X
MOV AL,*+AR4[0] ; Data read
nop
nop
nop
nop
nop
nop ; The IC will point here

In the following example, a write address watchpoint occurs when the address
Y is accessed, and the CPU stops with the IC pointing six instructions after that
point:

MOV AR4,#Y
MOV *+AR4[0],AL ; Data write
nop
nop
nop
nop
nop
nop ; The IC will point here

7.7.3 Benchmark Counter/Event Counter(s)

The 40-bit performance counter on the C28x can be used as a benchmark
counter to increment every CPU clock cycle (it can be configured not to count
when the CPU is in the debug-halt state). Wait states affect the counter. Wait
states in the read 1 and write pipeline phases of an executing instruction affect
the counter, regardless of whether an instruction is being single-stepped or
run. However, wait states in the fetch 1 pipeline phase do not affect the counter
during single-stepping, because the cycle counting does not begin until the de-

Analysis Breakpoints, Watchpoints, and Counter(s)

7-21Emulation Features

code 2 pipeline phase. The counter counts wait states caused by instructions
that are fetched but not executed. In most cases, these effects cancel each
other out. Benchmarking is best used for larger portions of code. Do not rely
heavily on the precision of the benchmarking. (For more information about the
pipeline, see Chapter 4.)

Alternatively, you can configure the 40-bit performance counter as two 16-bit
or one 32-bit event counter if you want to generate a debug event when the
counter equals a match value. The comparison between the counter value and
the match value is done before the count value is incremented. For example,
suppose you initialize a counter to 0. A match value of 0 causes an immediate
debug event (when the action to be counted occurs), and the counter holds
1 afterward.

You can also clear the counter when a hardware breakpoint or address watch-
point occurs. With this feature, you can implement a mechanism similar to a
watchdog timer: if a certain address is not seen on the address bus within a
certain number of CPU clock cycles, a debug event occurs.

7.7.4 Typical Analysis Unit Configurations

Each analysis unit can be configured to perform one analysis job at a time.
Typical configurations for these two analysis units can be any one of the follow-
ing:

� Two analysis breakpoints (i.e., hardware breakpoints)

Detect when an instruction is executed from a specified address or range
of addresses. Each hardware breakpoint only requires one analysis unit.

� Two hardware address watch points

Detect when any value is either read from or written to a specified address
or a range of addresses. In this case, the data written or read is not speci-
fied. Only the address of the location is specified and whether to watch for
reads or writes to that address. Each watchpoint only requires one analy-
sis unit.

� One address with data watchpoint

Detect when a specified data value is either read from or written to a speci-
fied address. In this configuration you can either watch for a read or a write
but not both reads and writes. This type of watchpoint requires both analy-
sis units.

� A set of two chained breakpoints

Detect when a given instruction is executed after another specified in-
struction.

Analysis Breakpoints, Watchpoints, and Counter(s)

 7-22

� A benchmark counter/event counter

The benchmark counter is only available with analysis unit 1. This counter
can be used as a benchmark counter to count cycles or instructions. It can
also be used to count AU2 events.

Configuration of the analysis resources is supported in Code Composer Stu-
dio. For more information on configuring these, use the Code Composer online
help.

Data Logging

7-23Emulation Features

7.8 Data Logging

Data logging enables the C28x to send selected memory values to a host proc-
essor using the standard JTAG port and an XDS510 or other compatible scan
controller. You control data logging activity with your application code.

To perform data logging, you must create a linear buffer of 32-bit words to hold
a packet of information. Your application code controls the size, format, and
location of this buffer and also determines when to send a buffer�s contents
to the host. You can control the size of a data logging buffer in two ways:

� Specify a count value in the upper eight bits of ADDRH (when the number
of 32-bit words you want to log is between 1 and 256)

� Specify an end address

Note:

When the debugger is not active, the data logging transfers are considered
complete as soon as they are enabled to prevent the application software
from getting stuck when there is nothing to receive the data.

7.8.1 Creating a Data Logging Transfer Buffer

To create a data logging transfer buffer, follow these steps in your application
code:

1) Execute the EALLOW instruction to enable access to emulation registers.

2) Specify the start address of the buffer in ADDRL and the six LSBs of
ADDRH (see Figure 7−6 and Figure 7−7). The address in ADDRL and
ADDRH is called the transfer address.

3) Use either of the following methods to specify when data logging is to end:

a) If the number of words you want to log is between 1 and 256, specify
a count value in the upper eight bits of ADDRH (see Figure 7−7). The
form of the count value is 256−n, where n is the number of 32-bit words
you want to log. As each word is transferred, both the transfer address
and the count value are decremented.

b) If the number of words you want to log is greater than 256, specify a
data logging end address in REFL and the six LSBs of REFH (see
Figure 7−8 and Figure 7−9). Load the ten MSBs of REFH with 0s.
When using this method, be sure to set the data logging end address
control register (EVT_CNTRL) first, and then the DMA control register

Data Logging

 7-24

(DMA_CNTRL). EVT_CNTRL is described in Table 7−5 (page 7-26),
and DMA_CNTRL is described in Table 7−4 (page 7-25).

Note:

The application must not read from the end address of the buffer during the
data logging operation. When the end address appears on the address bus,
the C28x ends the transfer.

4) Execute the EDIS instruction to disable access to emulation registers.

See Table 7−4 and Table 7−5 on the following pages for descriptions of the
registers associated with data logging.

Figure 7−6. ADDRL (at Data-Space Address 00 083816)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 LSBs of transfer address

Figure 7−7. ADDRH (at Data-Space Address 00 083916)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word counter Reserved 6 MSBs of transfer address

Figure 7−8. REFL (at Data-Space Address 00 084A16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 LSBs of end address

Figure 7−9. REFH (at Data-Space Address 00 084B16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 6 MSBs of end address

Data Logging

7-25Emulation Features

Table 7−4. Start Address and DMA Registers

Address Name Access Description

00 083816 ADDRL R/W Start address register (lower 16 bits)
15:0 Lower 16 bits of start address

00 083916 ADDRH R/W Word counter/start address register (upper 6 bits)
15:8 Word counter. When using this to stop the data

logging transfer, set the counter to 256 − n,
where n is the number of 32-bit words to
transfer. Otherwise set the counter to 0.

7:6 Reserved. Set to 0.
5:0 Upper 6 bits of start address

00 083E16 DMA_CNTRL R/W DMA control register
15:14 Set to 0
 13 Set to 1
 12 Set to 1
 11 Give higher priority to:

0: CPU (nonpreemptive mode)
1: Data logging (preemptive mode)

 10 Allow data logging during time-critical ISR?
0: No
1: Yes

 9 Allow data logging while DBGM = 1?
0: No (polite accesses)
1: Yes (rude accesses)

 8:6 Set to 1
 5:4 0: EMU0/EMU1 using TCK

1: EMU0/EMU1 using FCK/2
2: JTAG signals
3: Reserved

 3:2 Method for ending data logging session:
0: Use the count register to stop data logging
1: Use an end address to stop data logging

 1:0 Data logging control/status:
0: Release resource from data logging operation
1: Claim resource for data logging operation
2: Enable resource for data logging operation
3: Data logging operation is complete. Bits 14:10
 are corrupted when this occurs.

00 083F16 DMA_ID R DMA ID register
15:14 Resource control:

0: Resource is free
1: Application owns resource
2: Debugger owns resource

13:12 Set to 3.
 11:0 Set to 1.

Data Logging

 7-26

Table 7−5. End-Address Registers

Address Name Access Description

00 084816 MASKL R/W Set to 0

00 084916 MASKH R/W Set to 0

00 084A16 REFL R/W Data logging end reference address (lower 16 bits)
15:0 Lower 16 bits of start address

00 084B16 REFH R/W Data logging end reference address (upper 6 bits)
15:6 Set to 0
 5:0 Upper 6 bits of start address

00 084E16 EVT_CNTRL R/W Data logging end address control register
15:14 Set to 0
 13 Set to 1
 12 Set to 1
 11:5 Set to 0
 4:2 Set to 1
 1:0 End-address resource control/status:

0: Release end-address resource.
1: Claim end-address resource.
2: Enable end-address resource.
3: Data logging operation has ended. Bits 14:10 are
 corrupted when this occurs.

00 084F16 EVT_ID R Data logging end address ID register
15:14 Resource control:

0: Resource is free
1: Application owns resource
2: Debugger owns resource

13:12 Set to 1
 11:0 Set to 2

7.8.2 Accessing the Emulation Registers Properly

Make sure your application code follows the following protocol when access-
ing the emulation registers that have been provided for data logging. Each re-
source has a control register and an ID register.

1) Enable writes to memory-mapped registers by using the EALLOW in-
struction.

2) Write to the appropriate control register to claim the resource you want to
use. The resource for data logging transfers uses DMA_CNTRL (see
Table 7−4 on page 7-25). The resource for detecting the data logging end
address uses EVT_CNTRL (see Table 7−5).

Data Logging

7-27Emulation Features

3) Wait at least three cycles so that the write to the control register (done in
the write phase of the pipeline) occurs before the read from the ID register
in step 4. You can fill in the extra cycles with NOP (no operation) instruc-
tions or with other instructions that do not involve accessing the emulation
registers.

4) Read the appropriate ID register and verify that the application is the own-
er. The resource for data logging transfers uses DMA_ID (see Table 7−4
on page 7-25). The resource for detecting the data logging end address
uses EVT_ID (see Table 7−5 on page 7-26). If the application is not the
owner, then go back to step 2 until this succeeds (you may want a time-out
function to prevent an endless loop). This step is optional. The application
would fail to become the owner only if the debugger already owns the re-
source.

5) If the application is the owner, the remaining registers for that function can
be programmed, and the control register written to again, to enable the
function. However, if the application is not the owner, then all of its writes
are ignored.

6) Disable writes to memory-mapped emulation registers by executing the
EDIS instruction.

If an interrupt occurs between the EALLOW instruction in step 1 and the EDIS
instruction in step 6, access to emulation registers are automatically disabled
by the CPU before the interrupt service routine begins and automatically reen-
abled when the CPU returns from the interrupt. This means that there is no
need to disable interrupts between the EALLOW instruction and the EDIS in-
struction.

The debugger can, at your request, seize ownership of a register from the ap-
plication; however, that is not the normal mode of operation.

7.8.3 Data Log Interrupt (DLOGINT)

The completion of a data logging transfer (determined either by the word
counter or by the end address) triggers a DLOGINT request. DLOGINT is ser-
viced only if it is properly enabled. If the CPU is halted in real-time mode, DLO-
GINT must be enabled in both the DBGIER and the IER. Otherwise, DLOGINT
must be enabled in the IER and by the INTM bit in status register ST1.

This interrupt capability is most useful when there are multiple buffers of data
to be transferred through data logging and the completion of one transfer
should begin the next.

Data Logging

 7-28

7.8.4 Examples of Data Logging

Example 7−1 shows how to log 20 32-bit words, starting at address 00 010016
in data memory. The accesses are preemptive (they have higher priority than
the CPU) and rude (they ignore the state of the DBGM bit). In addition, data
logging can occur during time-critical interrupt service routines. The applica-
tion can determine whether the data logging operation is complete by polling
the LSB of the DMA control register (DMA_CNTRL) at 00 083E16. When the
operation is complete, that bit is set to 1.

Example 7−1. Initialization Code for Data Logging With Word Counter

; Base addresses
ADMA .set 0838h

; Offsets
DMA_ADDRL .set 0
DMA_ADDRH .set 1
DMA_CNTRL .set 6
DMA_ID .set 7

EALLOW
MOV AR4, #ADMA ; AR4 pointing to register base addr
MOV *+AR4[#DMA_CNTRL],#1 ; Attempt to claim resource
NOP
NOP
NOP
CMP *+AR4[#DMA_ID],#7001h ; Value expected in ID register
B FAIL, NEQ ; If we don’t see the correct ID, then we

; failed (the resource is already in use)

MOV *+AR4[#DMA_ADDRL],#0100h ; Set starting address of buffer,
; and then the count

MOV *+AR4[DMA_ADDRH],#((256 − 20) << 8)

MOV *+AR4[DMA_CNTRL],#3E62h
EDIS

Example 7−2 shows how to log from address 00 010016 to address 00 02FF16
in data memory. The accesses are nonpreemptive (they have lower priority
than the CPU), and are polite (they are not performed when the DBGM bit is
0). The data logging cannot occur when a time-critical interrupt is being ser-
viced. An end address of 00 02FF16 is used to end the transfer. The applica-
tion must not read from 00 02FF16 during the data logging; a read from that
address stops the data logging. As in Example 7−1, the application can poll
the LSB of DMA_CNTRL for a 1 to determine whether the data logging opera-
tion is complete.

Data Logging

7-29Emulation Features

Example 7−2. Initialization Code for Data Logging With End Address

; Base addresses
ADMA .set 0838h
DEVT .set 0848h

; Offsets
DMA_ADDRL .set 0
DMA_ADDRH .set 1
DMA_CNTRL .set 6
DMA_ID .set 7
MASKL .set 0
MASKH .set 1
REFL .set 2
REFH .set 3
EVT_CNTRL .set 6
EVT_ID .set 7

EALLOW
MOV AR5, #DEVT ; AR5 pointing to End Address registers
MOV AR4, #ADMA ; AR4 pointing to Start/Control base
MOV *+AR5[#EVT_CNTRL],#1 ; Attempt to claim End Address
MOV *+AR4[#DMA_CNTRL],#1 ; Attempt to claim Start/Control
NOP
NOP
NOP
CMP *+AR5[#EVT_ID],#5002h ; Value expected in ID register
B FAIL, NEQ ; If we don’t see the correct ID, FAIL

CMP *+AR4[#DMA_ID],#7001h ; Value expected in ID register
B FAIL, NEQ ; If we don’t see the correct ID, FAIL

MOV *+AR5[#MASKL],#0 ; Attempt to claim End Address
MOV *+AR5[#MASKH],#0 ; Attempt to claim End Address
MOV *+AR5[#REFL],#02FFh ; Stop data logging at address 0x02FF
MOV *+AR5[#REFH],#0 ; Attempt to claim End Addr
MOV *+AR5[#EVT_CNTRL],# (2 | (1<<2) | (1<<12) | (1<<13))

MOV *+AR4[#DMA_ADDRL],#0100h ; Set buffer start address and then the count
MOV *+AR4[DMA_ADDRH],#0

MOV *+AR4[DMA_CNTRL],#3066h
EDIS

Sharing Analysis Resources

 7-30

7.9 Sharing Analysis Resources

You can use analysis breakpoints, watchpoints, and a benchmark/event
counter through the debugger, and you can use data logging through applica-
tion code. Table 7−6 lists the analysis resources, and Figure 7−10 shows
which resources are available to be used at the same time.

When the application owns analysis resources, they will be cleared (made un-
owned and set to the completed state) by a reset. When the debugger owns
the resources, they are not cleared by reset but by the JTAG test-logic reset.
This ensures that when you are using the debugger, the resources can be
used even while the target system undergoes a reset.

Table 7−6. Analysis Resources

Resource Purpose

BA0 Break on contents of program address or memory address bus

BA1 Break on contents of program address or memory address bus

BD Break on contents of program data, memory read data, or memory
write data in addition to an address bus

Data log Perform data logging using counter

Benchmark Count CPU cycles

Figure 7−10. Valid Combinations of Analysis Resources

BA0 BA1 BD Data log Benchmark

BA0 Yes Yes No Yes� Yes

BA1 Yes Yes No No No

BD No No Yes No No

Data log Yes� No No Yes No

Benchmark Yes No No No Yes

� The data logging mode that uses the word counter allows this combination, but not the data logging mode that
uses the end address (see section 7.8, Data Logging).

Diagnostics and Recovery

7-31Emulation Features

7.10 Diagnostics and Recovery

Debug registers within the CPU keep track of the state of several key signals.
This allows diagnosis of such problems as a floating READY signal, NMI sig-
nal, or RS (reset) signal. Should the debug software attempt an operation that
does not complete after a certain time-out period (as determined by the debug
software), it attempts to determine the probable cause and display the situa-
tion to you. You can then abort, correct the situation or allow it to correct itself,
or chose to override it.

Such situations include:

� RS being asserted

� A ready signal not being asserted for a memory access

� NMI being asserted

� The absence of a functional clock

� The occurrence of a JTAG test-logic-reset

This page intentionally left blank

 7-32

This page intentionally left blank

A-1

Appendix A

Register Quick Reference

For the status and control registers of the �28x, this appendix summarizes:

� Their reset values
� The instructions available for accessing them
� The functions of their bits

Topic Page

A.1 Reset Values of and Instructions for Accessing the Registers A-2. . . .

A.2 Register Figures A-3.

Appendix A

Reset Values of and Instructions for Accessing the Registers

A.1 Reset Values of and Instructions for Accessing the Registers

Table A−1 lists the CPU status and control registers, their reset values, and the
instructions that are available for accessing the registers.

Table A−1. Reset Values of the Status and Control Registers

Register Description Reset Value Instructions

ST0 Status register 0 0000 0000 0000 00002 PUSH, POP, SETC, CLRC

ST1 Status register 1 0000 M000�0000�V0112 PUSH, POP, SETC, CLRC

IFR Interrupt flag register 0000 0000�0000�00002 PUSH, AND, OR

IER Interrupt enable register 0000 0000 0000 00002 MOV, AND, OR

DBGIER Debug interrupt enable register 0000�0000�0000�00002 PUSH, POP

Note: V: Bit 3 of ST1 (the VMAP bit) depends on the level of the VMAP input signal at reset. If the VMAP signal is low, the
VMAP bit is 0 after reset; if the VMAP signal is high, the VMAP bit is 1 after reset. For C28x devices that do not pin out
VMAP, the signal is tied high internal to the device.
M: Bit 11 of ST1 (the M0M1MAP bit) depends on the level of the M0M1MAP input signal at reset. If the M0M1MAP
signal is low, the bit is 0, high bit is 1. For C28x devices that do not pinout MOM1MAP, the signal is tied high internal to
the device.

Register Figures

A-3Register Quick Reference

A.2 Register Figures

The following figures summarize the content of the �28x status and control reg-
isters. Each figure in this section provides information in this way:

� The value shown in the register is the value after reset.

� Each unreserved bit field or set of bits has a callout that very briefly de-
scribes its effect on the processor.

� Each nonreserved bit field or set of bits is labeled with one of the following
symbols:

� R indicates that your software can read the bit field but cannot write to
it.

� R/W indicates that your software can read the bit field and write to it.

� Where needed, footnotes provide additional information for a particular
figure.

Register Figures

Figure A−1. Status register ST0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0
ÉÉÉ
ÉÉÉ
ÉÉÉ

0 0 0 0 0 0 0 0 0 0 0

OVC/OVCU PM V N Z C TC OVM SXM

Overflow counter

R/WR/W

Flag is reset
Overflow detected

0
1

Overflow flag

R/W

Sign extension suppressed
Sign extension mode selected

0
1

Sign-extension mode

Product shift mode
Left shift by 1
No shift
Right shift by 1, sign extended
Right shift by 2, sign extended
Right shift by 3, sign extended
Right shift by 4, sign extended
Right shift by 5, sign extended
Right shift by 6, sign extended

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

R/WR/WR/WR/WR/WR/W

Behaves differently for signed and unsigned
operations:
Signed operations (OVC)
 Increments by 1 for each positive overflow;
 Decrements by 1 for each negative overflow.
Unsigned operations (OVCU)
 Increments by 1 for ADD operations that
 generate a Carry
 Decrements by 1 for SUB operations that
 generate a Borrow

0
1
0
1
0
1
0
1

Negative condition false
Negative condition true

0
1

Negative flag

Zero condition false
Zero condition true

0
1

Zero flag

Carry not detected/borrow detected
Carry detected/borrow not detected

0
1

Carry bit

Holds result of test performed
by TBIT or NORM instruction

Test/control flag

Results overflow normally
Overflow mode selected

0
1

ACC overflow mode

Note: For more details about ST0, see section 2.3 on page 2-16.

Register Figures

A-5Register Quick Reference

Figure A−2. Status register ST1, Bits15−8
15 14 13 12 11 10 9 8

0 0 0 0 0 0 0
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

0

ARP XF MOM1MAP CNF OBJMODE AMODE

R/W R/WR/WR/W R

0
1

XF status bit

0
1

Address mode bit

0
1

Object compatibility mode bit

C2xLP-mapping mode bit
PAGE0 stack addressing mode
PAGE0 direct addressing mode

0
1

0
1

M0 and M1 mapping mode bit

Auxiliary register pointer
XAR0 selected
XAR1 selected
XAR2 selected
XAR3 selected
XAR4 selected
XAR5 selected
XAR6 selected
XAR7 selected

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

R/W

C27x compatible map
C28x/C2xLP compatible map

C28x/C27x processing mode
C2xLP addressing modes

XFS output signal low
XFS output signal is high

M0 is 0−3FF data, 400−7FF pro-
gram
M0 is 0−3FF data and program
SP starts at 0x400.

Register Figures

Figure A−3. Status Register ST1, Bits 7−0
7 6 5 4 3 2 1 0

0 0 0 0
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

X�
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

0 1 1

IDLESTAT EALLOW LOOP SPA VMAP PAGE0 DBGM INTM

R/WR/W

Access to emulation registers disabled
Access to emulation registers enabled

0
1

Emulation access enable bit

R/WR/WR/WR/WR

LOOPNZ/LOOPZ instruction done
LOOPNZ/LOOPZ instruction in
progress

0
1

Loop instruction status bit

Maskable interrupts globally enabled
Maskable interrupts globally disabled

0
1

Interrupt enable mask bit

Debug events enabled
Debug events disabled

0
1

Debug enable mask bit

PAGE0 addressing configuration bit
PAGE0 stack addressing mode
PAGE0 direct addressing mode

0
1

Interrupt vectors mapped to program-
memory addresses 00�000016−00�003F16
Interrupt vectors mapped to program-
memory addresses 3F�FFC016−3F�FFFF16

0

1

Vector map bit

Stack pointer has not been
aligned to even address
Stack pointer has been aligned to
even address

0
1

Stack pointer alignment bit

IDLE instruction done
IDLE instruction in progress

0
1

IDLE status flag bit

R

� These reserved bits are always 0s and are not affected by writes.
� The VMAP bit depends on the level of the VMAP input signal at reset. If the VMAP signal is low, the VMAP bit is 0 after reset;

if the VMAP signal is high, the VMAP bit is 1 after reset. For C28x devices that do not pin out the VMAP signal, the signal is tied
high internal to the device.

Note: For more details about ST1, see section 2.4 on page 2-34.

Register Figures

A-7Register Quick Reference

Figure A−4. Interrupt flag register (IFR)

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁÁ
ÁÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁRTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W

0
1

RTOSINT not pending
RTOSINT pending

0
1

DLOGINT not pending
DLOGINT pending

0
1

INT14 not pending
INT14 pending

0
1

INT13 not pending
INT13 pending

0
1

INT12 not pending
INT12 pending

0
1

INT11 not pending
INT11 pending

0
1

INT10 not pending
INT10 pending

0
1

INT9 not pending
INT9 pending

R/W R/W R/WR/WR/W R/W R/W

RTOSINT flag bit

DLOGINT flag bit

INT14 flag bit

INT13 flag bit

INT12 flag bit

INT11 flag bit

INT10 flag bit

INT9 flag bit

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁ

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W

0
1

INT8 not pending
INT8 pending

0
1

INT7 not pending
INT7 pending

0
1

INT6 not pending
INT6 pending

0
1

INT5 not pending
INT5 pending

0
1

INT4 not pending
INT4 pending

0
1

INT3 not pending
INT3 pending

0
1

INT2 not pending
INT2 pending

0
1

INT1 not pending
INT1 pending

R/W R/W R/WR/WR/W R/W R/W

INT8 flag bit

INT7 flag bit

INT6 flag bit

INT5 flag bit

INT4 flag bit

INT3 flag bit

INT2 flag bit

INT1 flag bit

Note: For more details about the IFR, see section 3.3.1 on page 3-7.

Register Figures

Figure A−5. Interrupt enable register (IER)

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 Á
ÁRTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W

0
1

RTOSINT disabled
RTOSINT enabled

0
1

DLOGINT disabled
DLOGINT enabled

0
1

INT14 disabled
INT14 enabled

0
1

INT13 disabled
INT13 enabled

0
1

INT12 disabled
INT12 enabled

0
1

INT11 disabled
INT11 enabled

0
1

INT10 disabled
INT10 enabled

0
1

INT9 disabled
INT9 enabled

R/W R/W R/WR/WR/W R/W R/W

RTOSINT enable bit

DLOGINT enable bit

INT14 enable bit

INT13 enable bit

INT12 enable bit

INT11 enable bit

INT10 enable bit

INT9 enable bit

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
Á

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W

0
1

INT8 disabled
INT8 enabled

0
1

INT7 disabled
INT7 enabled

0
1

INT6 disabled
INT6 enabled

0
1

INT5 disabled
INT5 enabled

0
1

INT4 disabled
INT4 enabled

0
1

INT3 disabled
INT3 enabled

0
1

INT2 disabled
INT2 enabled

0
1

INT1 disabled
INT1 enabled

R/W R/W R/WR/WR/W R/W R/W

INT8 enable bit

INT7 enable bit

INT6 enable bit

INT5 enable bit

INT4 enable bit

INT3 enable bit

INT2 enable bit

INT1 enable bit

Note: For more details about the IER, see section 3.3.2 on page 3-8.

Register Figures

A-9Register Quick Reference

Figure A−6. Debug interrupt enable register (DBGIER)

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁÁ
ÁÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁRTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W

0
1

RTOSINT disabled
RTOSINT enabled

0
1

DLOGINT disabled
DLOGINT enabled

0
1

INT14 disabled
INT14 enabled

0
1

INT13 disabled
INT13 enabled

0
1

INT12 disabled
INT12 enabled

0
1

INT11 disabled
INT11 enabled

0
1

INT10 disabled
INT10 enabled

0
1

INT9 disabled
INT9 enabled

R/W R/W R/WR/WR/W R/W R/W

RTOSINT debug enable bit

DLOGINT debug enable bit

INT14 debug enable bit

INT13 debug enable bit

INT12 debug enable bit

INT11 debug enable bit

INT10 debug enable bit

INT9 debug enable bit

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁ

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W

0
1

INT8 disabled
INT8 enabled

0
1

INT7 disabled
INT7 enabled

0
1

INT6 disabled
INT6 enabled

0
1

INT5 disabled
INT5 enabled

0
1

INT4 disabled
INT4 enabled

0
1

INT3 disabled
INT3 enabled

0
1

INT2 disabled
INT2 enabled

0
1

INT1 disabled
INT1 enabled

R/W R/W R/WR/WR/W R/W R/W

INT8 debug enable bit

INT7 debug enable bit

INT6 debug enable bit

INT5 debug enable bit

INT4 debug enable bit

INT3 debug enable bit

INT2 debug enable bit

INT1 debug enable bit

Note: For more details about the DBGIER, see section 3.3.2 on page 3-8.

B-1Submitting ROM Codes to TI

Appendix A

Submitting ROM Codes to TI

This appendix defines the scope of code-customized DSPs and describes the
procedures for developing prototype and production units. Information on sub-
mitting object code and on ordering customer ROM-coded devices is also
included.

Topic Page

B.1 Introduction B-2.

B.2 Code Submission B-4.

B.3 ROM Layout B-5.

B.4 ROM Code Generation Flow B-6.

Appendix B

Introduction

B.1 Introduction

ROM devices offer an attractive low cost alternative to flash devices. In a high-
volume application, flash devices may be used to develop, test, refine, and
finalize the application code. When the code has been finalized, the code can
be submitted to Texas Instruments for masking into the on-chip program ROM.
Figure B−1 illustrates the procedural flow for developing and ordering
TMS320 masked parts. When ordering, there is a one-time, nonrefundable
charge for mask tooling. A minimum production order per year is required for
any masked-ROM device. ROM codes will be deleted from the TI system one
year after the final delivery.

Introduction

B-3Submitting ROM Codes to TI

Figure B−1. TMS320 ROM Code Prototype and Production Flowchart

No

Customer submits
custom code

Customer submits
device requirements

Customer submits
new code release form

TI performs
ROM receipt

Customer
approves

ROM receipt

No

TI orders masks,
manufactures, and
ships prototypes

Yes

Customer
approves
prototype

Yes

Customer releases
to production

TI ships
production devices

Code Submission

B.2 Code Submission

ROM codes for 28x devices (in COFF format) may be submitted as an attach-
ment to email or in a 3 ½ inch floppy. Each ROM code submitted is assigned
a unique �D-number� in the format DExxxnnn. When code is submitted to TI
for masking, the code is reformatted to accommodate the TI mask-generation
system. System-level verification by the customer is, therefore, necessary to
ensure the reformatting remains transparent and does not affect the execution
of the algorithm. The formatting changes involve the removal of address-re-
location information (the code address begins at the base address of the ROM
in the TMS320 device and progresses without gaps to the last address of the
ROM) and the addition of data in the reserved locations of the ROM for device
ROM test. Because these changes have been made, a checksum comparison
is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that
states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, non-production qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

Customers must also sign a release that states:

Any masked ROM device may be resymbolized as TI standard prod-
uct and resold as though it were an unprogrammed version of the de-
vice, at the convenience of Texas Instruments.

ROM Layout

B-5Submitting ROM Codes to TI

B.3 ROM Layout

1K OTP-ROM will be reserved for TI internal testing. This space will follow the
1K OTP-ROM meant for the customer. Locations 0x3F7FF8 � 0x3F7FFF will
contain the CSM passwords similar to the flash parts.

ROM Code Generation Flow

B.4 ROM Code Generation Flow

Step 1: Submission of code to TI

There are three different possibilities while submitting a code for
ROM:

1) A single COFF file that contains code for both �customer-OTP�
as well as �customer ROM� may be submitted.

2) Code could be provided in two different COFF files, one for �cus-
tomer-OTP� and the other for �customer ROM�.

3) Code could be provided for �customer ROM� alone and not the
�customer-OTP�.

Step 2: Creating the ROM memory image

This is done by first creating a memory array corresponding to the
size of the ROM (including the OTP areas) and filling it with 0xFFFF.
The memory is then loaded with the customer COFF file(s), TI test
code and the D-number.

The numerical portion of the D-number is converted to its hexadeci-
mal equivalent and stored in 0x3F7FF2 & 0x3F7FF3 and 0x3D7BFC
& 0x3D7BFD. The symbol �DE� is not converted. For example, for
DE121001, the decimal number 121001 will be converted to its hex-
adecimal equivalent (1D8A9) and stored in the D-number locations.
D8A9 will be stored in address �n� and 0001 will be stored in address
�n+1�. The D-number is stored in both �customer-OTP� as well as
�customer ROM� areas.

Step 3: Computation of checksum

The checksum is now computed for the ROM contents (Customer-
OTP, TI-OTP and main ROM arrays separately) using the following
algorithm:

The contents of an address is XORed with the address and the result
is stored in a variable. This is done for the chosen ROM array and
the results are added together. The final sum total becomes the
checksum for that ROM array. Only the least significant 16-bits of the
address are used for checksum computation. Any overflow at the
end is ignored and only 32-bits from the end-result are stored. Three
unique checksums are computed for the three ROM arrays (Custom-
er-OTP, TI-OTP and main ROM arrays) and stored as shown in the
table below.

The following memory zones are used for the purpose of checksum
computation:

ROM Code Generation Flow

B-7Submitting ROM Codes to TI

� �Customer-OTP� area, including the D-number. Addresses
0x3D7BFE and 0x3D7BFF, which are eventually used to store
the checksum are not used in the computation.

� TI-OTP area containing TI test code. Addresses 0x3D7FFE and
0x3D7FFF, which are eventually used to store the checksum are
not used in the computation.

� �Customer ROM� area, including the ROM entry-point and CSM
passwords. Addresses 0x3F7FF4 and 0x3F7FF5, which are
eventually used to store the checksum are not used in the com-
putation.

The computed checksum is written into the corresponding locations
(see Table B−1). The image of the ROM is now ready in the PC
memory.

Table B−1. Checksum Computation Memory Locations

Address Content

0x3D7800
….

0x3D7BFB

1K OTP for customer code. (referred to in this document as Customer-OTP)

0x3D7BFC� Low-word of D-number

0x3D7BFD� High-word of D-number

0x3D7BFE� Low-word of checksum (for Customer-OTP)

0x3D7BFF� High-word of checksum (for Customer-OTP)

0x3D7C00
….

0x3D7FFD

1K OTP for TI test code. (referred to in this document as TI-OTP)

0x3D7FFE Low-word of checksum (for TI-OTP)

0x3D7FFF High-word of checksum (for TI-OTP)

0x3D8000�
….

0x3F7FF1

Start address for customer code in ROM (referred to in this document as Customer-
ROM)

End address for customer code in ROM

0x3F7FF2� Low-word of D-number

0x3F7FF3� High-word of D-number

0x3F7FF4� Low-word of checksum (for Customer-ROM)

ROM Code Generation Flow

0x3F7FF5� High-word of checksum (for Customer-ROM)

0x3F7FF6 ROM entry-point (Branch instruction)

0x3F7FF7 ROM entry-point (Branch instruction)

0x3F7FF8
….

0x3F7FFF

CSM passwords

� These addresses are reserved for the ROM code generation flow and cannot be used by customer code. Using these locations
to store the D-number and checksum does not compromise code security.

� The start address for customer code in ROM depends on the part number. While the start address is 0x3D8000 for
C2812/C2811, it is 0x3E8000 for C2810. The customer code should provide a branch instruction and the corresponding address
at locations 0x3F7FF6 & 0x3F7FF7.

Step 4: Saving the COFF files for gate placement

The ROM image is saved into two COFF files, one for the OTP and
the other for the main ROM array. The files are named as follows:

DExxy000_OTP.out � ROM image for the OTP

DExxy000_main.out � ROM image for the main ROM array.

These two files will be sent to the customer for approval.

C-1

Appendix A

C2xLP and C28x Architectural Differences

This appendix highlights some of the architecture differences between the
C2xLP and the C28x. Not all of the changes are listed here. An emphasis is
placed on those changes of which you need to be aware while migrating from
a C2xLP-based design to a C28x design. In particular changes in CPU regis-
ters and memory map are addressed.

Topic Page

C.1 Summary of Architecture Differences Between C2xLP and C28x C-2. .

C.2 Registers C-3.

C.3 Memory Map C-12.

Appendix C

Summary of Architecture Differences Between C2xLP and C28x

C.1 Summary of Architecture Differences Between C2xLP and C28x

The C28x CPU features many improvements over the C2xLP CPU. A summa-
ry of the enhancements is given here.

Table C−1. General Features

Feature C2xLP C28x

Program memory space 64K (16 address signals) 4M (22 address signals)

Data memory space 64K (16 address signals) 4G (32 address signals)

Number of internal buses 3 (prog, data-read, data-write) 3 (prog, data-read, data-write)

Addressable word size 16 16/32

Multiplier 16 bits 16/32 bits

Maskable CPU interrupts 6 14

C.1.1 Enhancements of the C28x over the C2xLP:
� Much higher MHz operation
� 32 x 32 MAC
� 16 x16 Dual MAC
� 32-bit register file
� 32-bit single-cycle operations
� 4M linear program-address reach
� 4G linear data-address reach
� Dedicated software stack pointer
� Monitorless real-time emulation
� 40−50% better C code efficiency than C2xLP
� 20−30% better assembly code efficiency than C2xLP
� Atomic operation eliminates need to disable/re-enable interrupts
� Extended debugging features (Analysis block, data logging, etc.)
� Faster interrupt context save/restore
� More efficient addressing modes
� Unified memory map
� Byte packing and unpacking operations

When you first recompile your C2xLP code set for C28x, you will not be able
to take advantage of every enhancement since you are limited by the original
source code. Once you begin migrating your code, however, you will quickly
begin to take advantage of the full capabilities the C28x offers. See
Appendix D for help with migration to C28x.

Registers

C-3C2xLP and C28x Architectural Differences

C.2 Registers

The register modifications to the C2xLP are shown in Figure C−1. Registers
that are shaded show the changes or enhancements on the C28x. The itali-
cized names on the left are the original C2xLP names for the registers. The
names on the right are the C28x names for the registers.

Figure C−1. Register Changes From C2xLP to C28x

T or TH

PH

AH

TL

PL

AL

9

AR0H AR0

AR1AR1H

AR2AR2H

AR3H AR3

AR4AR4H

AR6H

AR7H

AR5H

AR6

AR7

AR5

22 bits

32 bits

XT

P

ACC

SP

DP

XAR0

XAR1

XAR2

XAR3

XAR4

XAR5

XAR6

XAR7

PC

RPC

IER

DBGIER

IFR

ST0

ST1

C28x
Names

C2xLP
Names

TREG

PREG

ACC

DP

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

PC

IMR�

IFR�

ST0

ST1

16
bits bits

16

�On the C2xLP, IMR and IFR were memory mapped. On the C28x, they are registers.

Registers

C.2.1 CPU Register Changes

A brief description of the register modifications is given below. For a complete
description of each register, see descriptions in the C2xLP and C28x Refer-
ence Guides.

XT Multiplicand register. The 32-bit multiplicand register is called XT
on the C28x. The C2xLP TREG is represented by the upper 16 bits
(T). The lower 16 bit area is known as TL. The assembler will also
accept TH in place of T for the upper 16 bits of the XT register.

P Product register. This register is the same as the C2xLP PREG.
You can separately access the high half (PH) or the low half (PL) on
the C28x

ACC Accumulator. The size of ACC is the same on the C28x. Access to
the register has been enhanced. On C28x, you can access it as two
16-bit registers (AL and AH).

SP Stack Pointer. The SP is new on the C28x. It points directly to the
C28x software stack

XAR0 −
XAR7

Auxiliary registers. All of the auxiliary registers (XARn) are in-
creased to 32 bits on the C28x. This enables a full 32-bit address
reach in data space. Some instructions separately access the low
half of the registers (ARn).

PC Program counter. The PC is 22 bits on C28x. On the C2xLP, the PC
is 16 bits

RPC Return program counter. The RPC register is new on the C28x.
When a call operation is performed, the return address is saved in
the RPC register and the old value in the RPC is saved on the stack.
When a return operation is performed, the return address is read
from the RPC register and the value on the stack is written into the
RPC register. The net result is that return operations are faster (4
instead of 8 cycles). This register is only used when certain call and
return instructions are used. Normal call and return instructions by-
pass this register.

IER Interrupt enable register. The IER is analogous to the Interrupt
Mask Register (IMR) on the C2xLP. It performs the same function,
however, the name has changed to more appropriately describe the
function of the register. Each bit in the register enables one of the
maskable interrupts. On the C2xLP, there are six maskable CPU in-
terrupts. On the C28x CPU, there are 16 CPU interrupts. On the
C2xLP, the IMR was memory mapped.

DBGIER Debug interrupt-enable register. The DBGIER is new on the C28x.
It enables interrupts during debug events and allows the processor
and debugger to perform real-time emulation.

IFR Interrupt flag register. The IFR functions the same as on the C2xLP.
There are more valid bits in this register to accommodate the addi-
tional interrupts on the C28x. On the C2xLP, the IFR was memory
mapped.

Registers

C-5C2xLP and C28x Architectural Differences

ST0/ST1 Status Registers. The C28x status register bit positions are different
compared to the C2xLP. Figure C−3 shows the differences.

DP Data Page Pointer. On the C2xLP the DP is part of status register
ST0. The DP on the C28x is a separate register and is increased
from 9 to 16 bits.

C.2.2 Data Page (DP) Pointer Changes

C.2.2.1 C2xLP DP

The direct addressing mode on the C2xLP can access any data memory loca-
tion in the 64K address range of the device using a 9-bit data page pointer and
a 7-bit offset, supplied by the instruction, which is concatenated with the data
page pointer value to form the 16-bit data address location. An example
C2xLP operation is as follows:

LDP #VarA ; Load DP with page location for VarA

LACL VarA ; Load ACC low with contents of VarA

The first instruction initializes the DP register value with the �page� location for
the specified variable. Each page is 128 words in size. The assembler/linker
automatically resolve the page value by dividing the absolute address of the
specified location by 128. For example:

If ”VarA” address = 0x3456, then the DP value is:

DP(8:0) = 0x3456/128 = 0x69

The next instruction will then calculate the 7-bit offset of the specified variable
within the 128-word page. This offset value is then embedded in the address
field for that instruction. The assembler/linker automatically resolves the offset
value by taking the first 7 bits of the absolute address of the specified location.
For example:

If ”VarA” address = 0x3456, then the 7bit offset value is:

7-bit offset = 0x3456 & 0x007F = 0x56

C.2.2.2 C28x DP

The C28x also supports the direct addressing mode using the DP register;
however, the following changes and enhancements have been made:
� Supports 22-bit address reach
� DP increased from 9 to 16 bits
� DP is a separate 16-bit register
� When AMODE == 0, page size is 64 words and DP(15:0) is used
� When AMODE == 1, page size is 128 words and DP(15:1) is used, bit 0

of DP is ignored

When AMODE == 1, the DP and the direct addressing mode behaves identi-
cally to the C2xLP but are enhanced to 22-bit address reach from 16. When

Registers

AMODE == 0, the page size is reduced by half. This was done to accommo-
date other useful addressing modes.

The mapping of the direct addressing modes between the C2xLP and the
C28x is as shown in Figure C−2.

Figure C−2. Direct Addressing Mode Mapping

C28x

21 2 0
22 bit address

21 2 015 7 6 5

AMODE = 1:
AMODE = 0:

DP (15:1)

DP (15:0)
7-bit offset

6-bit offset

15

C2xLP

15

16 bit address
15

7 6

0

0

DP (8:0) 7-bit offset

Using the previous example, the assembler/linker will initialize the DP and
offset values as follows on the C28x:

C2xLP Original Source Mode (�−v28 −m20� mode, AMODE == 1)

LDP #VarA ; DP(15:0) = 0x3456/128 << 1 = 0x00D1

LACL VarA ; 7-bit offset = 0x3456 & 0x007F = 0x56

Equivalent C28x Mnemonics (after C2xLP source is reassembled with the
C28x assembler)

MOVZ DP,#VarA ; DP(15:0) = 0x3456/128 << 1 = 0x00D1

MOVU ACC,@@VarA ; 7-bit offset = 0x3456 & 0x007F = 0x56

C28x Addressing Mode (�−v28� mode, AMODE == 0)

MOVZ DP,#VarA ; DP(15:0) = 0x3456/64 = 0x00D1

MOVU ACC,@VarA ; 6-bit offset = 0x3456 & 0x003F = 0x16

Note: When using C28x syntax, the 128 word data page is indicated by using the double �@@� symbol. The 64 word data page
is indicated by the single �@� symbol. This helps the user and assembler to track which mode is being used.

Registers

C-7C2xLP and C28x Architectural Differences

C.2.3 Status Register Changes

Figure C−3. Status Register Comparison Between C2xLP and C28x

C2xLP Status Register ST0

ÁÁ
ÁÁ

15ÁÁÁ
ÁÁÁ

14ÁÁÁ
ÁÁÁ

13ÁÁÁ
ÁÁÁ

12ÁÁÁ
ÁÁÁ

11ÁÁÁ
ÁÁÁ

10ÁÁÁ
ÁÁÁ

9ÁÁÁ
ÁÁÁ

8ÁÁÁ
ÁÁÁ

7 ÁÁ
ÁÁ

6ÁÁÁ
ÁÁÁ

5ÁÁÁ
ÁÁÁ

4 ÁÁ
ÁÁ

3ÁÁÁ
ÁÁÁ

2ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0

ARP OV OVM 1 INTM DP

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−X ÁÁÁ
ÁÁÁ

R/W−0ÁÁÁ
ÁÁÁ

R/W−XÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

R/W−1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

R/W−X

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNote: R = Read access; W = Write access; value following dash (−) is value after reset.

C28x Status Register ST0
ÁÁ
ÁÁ15
ÁÁÁ
ÁÁÁ14

ÁÁ
ÁÁ13
ÁÁÁ
ÁÁÁ12

ÁÁ
ÁÁ11
ÁÁÁ
ÁÁÁ10

ÁÁ
ÁÁ9
ÁÁÁ
ÁÁÁ8

ÁÁ
ÁÁ7
ÁÁÁ
ÁÁÁ6

ÁÁÁ
ÁÁÁ5

ÁÁÁÁ
ÁÁÁÁ4

ÁÁÁ
ÁÁÁ3

ÁÁÁ
ÁÁÁ2

ÁÁÁ
ÁÁÁ1

ÁÁÁÁ
ÁÁÁÁ0

OVC/OVCU PM
ÁÁÁ
ÁÁÁ
ÁÁÁ

V
ÁÁÁ
ÁÁÁ
ÁÁÁ

N
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Z
ÁÁÁ
ÁÁÁ
ÁÁÁ

C
ÁÁÁ
ÁÁÁ
ÁÁÁ

TC
ÁÁÁ
ÁÁÁ
ÁÁÁ

OVM
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SXM

ÁÁÁÁÁÁÁÁÁÁR/W−000000 ÁÁÁÁÁR/W−000 ÁÁÁR/W−0ÁÁÁR/W−0ÁÁÁÁR/W−0ÁÁÁR/W−0ÁÁÁR/W−0ÁÁÁR/W−0ÁÁÁÁR/W−0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R = Read access; W = Write access; value following dash (−) is value after reset.

C2xLP Status Register ST1

ÁÁ
ÁÁ

15
ÁÁÁ
ÁÁÁ

14
ÁÁÁ
ÁÁÁ

13
ÁÁÁ
ÁÁÁ

12
ÁÁÁ
ÁÁÁ

11
ÁÁÁÁ
ÁÁÁÁ

10
ÁÁÁ
ÁÁÁ

9
ÁÁ
ÁÁ

8
ÁÁÁ
ÁÁÁ

7
ÁÁÁ
ÁÁÁ

6
ÁÁ
ÁÁ

5
ÁÁÁ
ÁÁÁ

4
ÁÁÁ
ÁÁÁ

3
ÁÁ
ÁÁ

2
ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ

0

ARB CNF TC SXM C 1 1 1 1 XF 1 1 PM
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−X
ÁÁÁ
ÁÁÁ

R/W−0
ÁÁÁ
ÁÁÁ

R/W−X
ÁÁÁÁ
ÁÁÁÁ

R/W−1
ÁÁÁ
ÁÁÁ

R/W−1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

R/W−1
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−00
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R = Read access; W = Write access; value following dash (−) is value after reset.

C28x Status Register ST1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

IDLESTAT ÉÉÉÉÉ
ÉÉÉÉÉ

EALLOW LOOP ÁÁÁÁ
ÁÁÁÁ

SPA ÁÁÁÁÁ
ÁÁÁÁÁ

VMAP ÁÁÁÁ
ÁÁÁÁ

PAGE0ÁÁÁÁÁ
ÁÁÁÁÁ

DBGM ÁÁÁÁ
ÁÁÁÁ

INTM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R−0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁ
ÁÁÁÁ

R−0 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−1 ÁÁÁÁ
ÁÁÁÁ

R/W−0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−1 ÁÁÁÁ
ÁÁÁÁ

R/W−1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15−13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

11 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8

ARP XF M0M1MAP Reserved OBJMODE AMODE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−000 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W−0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R−1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W−0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Notes: 1) R = Read access; W = Write access; value following dash (−) is value after reset; reserved bits are always 0s
and are not affected by writes.

Registers

Z Zero flag. Z is new on the C28x. It is involved in determining if the
results of certain operations are 0. It is also used for conditional
operations.

N Negative flag. N is new on the C28x. It is involved in determining if
the results of certain operations are negative. It is also used for con-
ditional operations.

V Overflow flag. V has changed names from OV on the C2xLP. It
flags overflow conditions in the accumulator.

PM Product shift mode. The PM has increased to a 3-bit register with
additional capabilities. Below is a comparison of the PM register in
the C2xLP and the C28x. Note that the register behaves differently
depending on the operational mode of the C28x device. The XSPM
instructions correspond to equivalent C2xLP instructions conver-
sion. On the C2xLP, the PM bits corresponded to no shift at reset.
On C28x, however, the PM corresponds to a left shift of 1 at reset.

Table C−2. C2xLP Product Mode Shifter

Bits Shift Value Instruction

00 no shift SPM 0

01 shift left 1 SPM 1

10 shift left 4 SPM 2

11 shift right 6 SPM 3

Table C−3. C28x Product Mode Shifter

C2xLP Source-Compatible Mode
AMODE == 1

OBJMODE = 1
PAGE0 == 0

C28x Mode
AMODE == 0

OBJMODE = 1
PAGE0 == 0

Bits Shift Value Instruction Shift Value Instruction

000 shift left 1 SPM +1 (or SPM 1) shift left 1 SPM +1

001 no shift SPM 0 (or SPM 0) no shift SPM 0

010 shift right 1 SPM �1 shift right 1 SPM −1

011 shift right 2 SPM �2 shift right 2 SPM −2

100 shift right 3 SPM �3 shift right 3 SPM −3

101 shift left 4 SPM +4 (or SPM 2) shift right 4 SPM −4

110 shift right 5 SPM �5 shift right 5 SPM −5

111 shift right 6 SPM �6 (or SPM 3) shift right 6 SPM −6

Registers

C-9C2xLP and C28x Architectural Differences

OVC: Overflow counter. OVC is new on the C28x. It can be viewed as
an extension of the accumulator. For signed operations, the OVC
counter is an extension of the overflow mode. For unsigned opera-
tions, the OVC counter (OVCU) is an extension of the carry mode.

DBGM: Debug enable mask bit. DBGM is new on the C28x. It is analo-
gous to the INTM bit and works in cooperation with the DBGIER
register to globally enable interrupts in real-time emulation.

PAGE0 PAGE0 addressing mode configuration bit. The PAGE0 bit is
new on the C28x. It is used for compatibility to the C27x and should
be left as 0 for users moving from the C2xLP to C28x.

VMAP Vector map bit. The VMAP bit is new on the C28x. It determines
from where in memory interrupt vectors will be fetched.

SPA Stack pointer alignment bit. The SPA bit is new on the C28x. It is
a flag used to determine if aligning the stack pointer caused an ad-
justment in the stack pointer address.

LOOP Loop instruction status bit. The LOOP bit is new on the C28x. It
is used in conjunction with the LOOPZ/LOOPNZ instructions.

EALLOW Emulation access enable bit. The EALLOW bit is new on the
C28x. It allows access to the emulation register on the C28x.

IDLESTAT IDLE status bit. The IDLESTAT bit is new on the C28x. It flags an
IDLE condition on the C28x, and is mainly used when returning
from an interrupt.

AMODE Address mode bit. The AMODE bit is new on the C28x. This mode
bit is used to select between C28x addressing mode (AMODE == 0)
and C2xLP addressing mode (AMODE == 1).

OBJMODE Object mode bit. The OBJMODE bit is new on the C28x. It is used
to select between C27x object mode (OBJMODE == 0) and C28x
object mode (OBJMODE == 1). For users moving from C2xLP to
C28x, this bit should always be set to 1.

Note: Upon reset of the C28x, this bit is set to 0 and needs to be changed in
firmware.

M0M1MAP M0 M1 map bit. The M0M1MAP bit is new on the C28x. It is only
used for C27x compatibility. For users transitioning from the C2xLP
to C28x this bit should always be set to 1.

XF XF pin status bit. The XF pin has the same function as on the
C2xLP. Please note that the reset state has changed on the C28x.

ARP Auxiliary register pointer. The ARP has the same functionality as
on the C2xLP. It should, however, only be used when transitioning
code to the C28x. The C28x has enhanced addressing modes
which eliminate the need to keep track of the ARP.

Register Reset Conditions

The functionality of the remaining bits is the same on C28x as they are on
C2xLP. It should be noted that although the functionality did not change, the
bit position in the registers did. These bits are:
� Sign extension mode (SXM)
� Overflow mode (OVM)
� Test/control flag (TC)
� Carry bit (C)
� Interrupt global mask bit (INTM)

C.2.4 Register Reset Conditions

The reset conditions of internal registers have changed between the C2xLP
and C28x as shown in Table C−4. Most C28x registers are cleared on a reset.

Differences in Table C−5 are highlighted in bold.

Table C−4. Reset Conditions of Internal Registers

C2xLP Register C2xLP Reset C28x Register C28x Reset

T X XT 0x00000000

P X P 0x00000000

ACC X ACC 0x00000000

AR0−AR7 X XAR0−XAR7 0x00000000

PC 0x0000 PC 0x3FFFC0

ST0 See Table C−5 ST0 0x0000

ST1 See Table C−5 ST1 0x080B

DP X DP 0x0000

− − SP 0x0400

IMR 0x00 IER 0x0000

− − DBGIER 0x0000

IFR 0x0000 IFR 0x0000

GREG 0x0000 − −

− − RPC 0x000000

X = Uninitiated

Register Reset Conditions

C-11C2xLP and C28x Architectural Differences

Table C−5. Status Register Bits
Reg C2xLP Bit

Name
C2xLP Reset Value C28x Bit Name C28x Reset Value

ST0 DP XXXXXXXXX SXM 0

INTM 1 OVM 0

OVM X TC 0

OV 0 C 0

ARP XXX Z 0

N 0

V 0

PM 000 (left shift 1)

ST1 PM 00 (no shift) INTM 1

XF 1 DBGM 1

C 1 PAGE0 0

SXM 1 VMAP 1

TC X SPA 0

CNF 0 LOOP 0

ARB XXX EALLOW 0

IDLESTAT 0

AMODE 0

OBJMODE 0

CNF not implement-
ed

0

M0M1MAP 1

XF 0

ARP 000

Memory Map

C.3 Memory Map

The major changes between the C2xLP and C28x memory maps are outlined
in this section. There are several differences between the C2xLP and C28x
memory maps. These improvements are due to the expanded architecture of
the C28x. The C28x CPU memory map ranges from 4G to 4M in data and pro-
gram memory, respectively. However, C28x CPU-based devices may not use
the entire memory range. See the device data sheet for the specific memory
range applicable to that device.

Vectors. On the C2xLP, only one vector table is present at address 0x0000.
These vectors were generally branch instructions to different interrupt service
routines. On the C28x, the vector table can be placed in two different locations
depending on the state of the VMAP input pin. On devices that do not pin out
the VMAP signal, it is tied internal to the device. Generally, vectors will be lo-
cated in non-volatile memory at 0x3FFFC0−0x3FFFFF. To take advantage of
relocatable vectors or fetching vectors from fast internal memory space, place
the vectors at address 0x000000−0x00003F. Often the C28x CPU interrupt
vectors are expanded using external hardware logic. In such cases, see the
related documents for the expanded vector map.

Memory space. On the C2xLP, the memory space for program, data, and I/O
space is each 64K words. On the C28x, the program memory space is 4M
words (22 address signals). The data memory space is 4G words (32 address
signals). The global space (32K) and I/O space (64K) is generally used for
C2xLP compatibility.

Program space. On the C2xLP CPU, program space could be mapped any-
where from (0x0−0xFFFF). With the extended address reach of the C28x (22
bits), the compatible region in program space for the C2xLP is
0x3F0000−0x3FFFF. Thus, any program memory on the C2xLP must be re-
mapped to this upper region on the C28x. When the processor accesses pro-
gram memory, the upper bits (bits 16−22) will be forced to all 1�s when C2xLP-
compatible instructions are used (See Appendix E).

Memory Map

C-13C2xLP and C28x Architectural Differences

Figure C−4. Memory Map Comparison (See Note A)

C28x memory map for C2xLP

0x0000-0000

Data Space - 64K

0x0000-0060

0x0000-0200

0x0000-0800

0x0000-2000

Data Space Program Space

Block Start
Address

0x0000-0040

VECTORS (32 x 32)
(enabled if VMAP = 0)

M0 SARAM (1K x 16)

0x0000-0300

0x0000-0400
M1 SARAM (1K x 16)

Emulation
registers
(2K x 16)

0x0000-FFFF

0x001−0000

Reserved for only C28x
addressing

Memory
Registers

Vectors (32 x 32)
(enabled if VMAP = 1)

B2 Block

B1 Block

B0 Block

C2xLP memory map

I/O space − 64K

B0 Block
CNF = 1

0x03E−FFFF

0x03F−0000

0x03F−FFC0

0x03F−FFFF

Vectors 32 x 16

Reserved

On-chip
4K SARAM

Don = 1

Global Space
0−32K

H
ig

h
 6

4K
 (

C
2x

L
P

 P
ro

g
ra

m
 S

p
ac

e)
L

o
w

 6
K

 (
C

2x
L

P
 D

at
a,

 I/
O

 S
p

ac
e)

Reserved

Program Space - 64K

0x0000-8000

Note A: Memory map is not to scale.

4K SARAM
Pon = 1

Memory Map

Data memory. The C2xLP has three internal memory regions (B0, B1, B2)
totaling 544 words. The C28x has two internal memory regions (M0,M1) total-
ing 1K words each. Note that for strict C2xLP compatibility, the memory re-
gions are placed at the same addresses as noted in Table C−6.

Table C−6. B0 Memory Map

C28x in C2xLP-Compatible Mode C2xLP

CNF Not Available CNF = 0

B0 range mapped in M0 block 200 − 2FFh.

(No mirroring of the block)

B0 in Data space

100 − 1FFh (mirrored locations)

200 − 2FFh

CNF Not Available CNF = 1

B0 range cannot be enabled in C2xLP-equivalent
program memory

B0 in program space

FE00 − FEFFh (mirrored locations)

FF00 − FFFFh

I/O space. I/O space has remained on the C28x for compatibility reasons, and
can only be accessed using IN and OUT/UOUT instructions. Not all C28x de-
vices will support I/O space. See the data sheet of your particular device for
details.

Global space. Global space is not supported on all C28x devices. See the
data sheet specific to your device for details.

Reserved memory. Reserved memory regions have changed on the C28x.
No user-defined memory or peripherals are allowed at addresses
0x800−0x9FF on the C28x. While using C2xLP-compatible mode, these ad-
dresses are reserved. It is recommended that C2xLP memory or peripherals
be relocated to avoid memory conflicts.

Stack space. The C28x has a dedicated software stack pointer. This pointer
is initialized to address 0x0400 (the beginning of block M1) at reset, and it
grows upward in address. It is up to the user to move this stack pointer if need-
ed in firmware.

D-1

Appendix A

C2xLP Migration Guidelines

The C28x DSP is source-code compatible with C2xLP DSP based devices.
The C28x DSP assembler accepts all C2xLP mnemonics with the exception
of a few instructions. This chapter provides guidelines for C2xLP code migra-
tion to a C28x device. C2xLP refers to the CPU used in all TMS320C24x,
TMS320C24xx, and TMS320C20x DSP devices.

Topic Page

D.1 Introduction D-2.

D.2 Recommended Migration Flow D-3.

D.3 Mixing C2xLP and C28x Assembly D-6.

D.4 Code Examples D-7.

D.5 Reference Tables for Code Migration Topics D-10.

Appendix D

Introduction

D.1 Introduction

This chapter provides guidelines that are intended for conversion from C2xLP
assembly source to C28x object code. The conversion steps highlight the ar-
chitectural changes between C2xLP and C28x operating modes. Future re-
leases of documents will contain code conversion examples and software li-
brary modules facilitating the conversion from C2xLP mixed C and assembly
source to C28x object code.

This chapter will be best understood if the reader has prior knowledge of Ap-
pendix C and Appendix E, as they explain the architectural and instructional
enhancements between the C2xLP and C28x DSPs.

Recommended Migration Flow

D-3C2xLP Migration Guidelines

D.2 Recommended Migration Flow

Use the following steps (shown in Figure D−1) to migrate code:

1) Install the latest development tools for the C28x DSP (e.g. Code Compos-
er Studio� version 2.x or higher)

2) Build the project with following C28x assembler options:

−m20 ; enable C2xLP instructions

− g ; enable source level debug to view the C2xLP

; instructions

−mw ; enable additional assembly checks

Code Composer Studio 2.x will assemble all C2xLP instructions and map
all the compatible instructions to their equivalent C28x instructions and
mnemonics. Code Composer Studio 2.x disassembly will display the in-
structions in the memory as C28x mnemonics only. If the source is built
with �g option, the relevant C2xLP source file will be also displayed and
will facilitate C2xLP instruction readability during debug.

3) Memory map:

Define your C28x device memory map with C2xLP compatible memory
sections. Build a linker command file (*.cmd). See Table D−8.

Select a C2xLP assembly source code *.asm for migration to C28x archi-
tecture.

4) Boot Code:

Add the C2xLP mode conversion code segment shown in section D.4.1 as
the first set of instructions after reset.

After reset, the C28x powers up in C27x object−compatible mode. Adding
these few lines of initialization code will place the device in the proper oper-
ating mode for executing reassembled C2xLP code.

Note: The C27x object-compatible mode is for use only for migration from the C27x
CPU. It is a reserved operating mode for all C28x and C2xLP applications.

5) This step will facilitate faster code conversion. In the C2xLP source file
modify the interrupt section with suggestions from the reference table in
section D.5.

In particular, modify the following types of code:

a) IMR and IFR − See the example code in section D.4.2.

b) Context Save/Restore − See the example code in section D.4.3

c) Comment all the known incompatible instructions or map with equiva-
lent instructions. See Table E−2 in Appendix E.

Recommended Migration Flow

Figure D−1. Flow Chart of Recommended Migration Steps

Start

Step 1
Migrate to Code Composer Studio

for the C28x DSP

Step 2
Configure your project with −m20, −mw, and −g assembler
options to enable acceptance of C2xLP mnemonics. Also
build a linker command file *.cmd for your C28x device.

Step 3
Select the C2xLP assembler source code for C28x

migration *.asm

Step 4
Add the initialization code segment to enable C2xLP

compatible mode in the beginning of the code.

Step 5
Comment or fix incompatible instructions in

C2xLP source, if any

Step 6
Invoke the C28x Assembler and assemble the modified

C2xLP source code to get a C28x *.obj file

?

Invoke the C28x Linker with assembled .obj files
Step 7

errors
Linker

?

Migrated code ready for Debug
Linker outputs C28x COFF file *.out

Step 8

End

See the tables in Section D.5 for
corrections to source code

Yes

No

Fix Linker errors. See the tables in
Section D.5 if required.

Yes

No

errors
Assembly

Legend: * represents user filename

Recommended Migration Flow

D-5C2xLP Migration Guidelines

6) Link the assembled code with the linker command file generated in
Step 2. Relink if necessary to avoid any linker related errors.

7) Assemble or reassemble using the C28x assembler until the assembly is
successful with no errors. The tables in section D.5 will help to resolve
most of the errors during the assembly process. This will prepare a *.obj
file, ready for C28x Linker processing.

8) The Linker output COFF file, *.out, will be the migrated code and should
be ready for Debug and integration.

Mixing C2xLP and C28x Assembly

D.3 Mixing C2xLP and C28x Assembly

At this point your original C2xLP code will be running on the C28x device. To facilitate further migra-
tion to C28x code, there are special assembler directives that will facilitate mixing of C2xLP code
and C28x code segments.

The .c28_amode and .lp_amode directives tell the assembler to override the
assembler mode.

.c28_amode The .c28_amode directive tells the assembler to operate in the C28x object
mode (−v28).

.lp_amode The .lp_amode directive tells the assembler to operate in C28x object − ac-
cept C2xLP syntax mode (−m20).

These directives can be repeated throughout a source file.

For example, if a file is assembled with the −m20 option, the assembler begins
the assembly in the C28x object − accept C2xLP syntax mode. When it en-
counters the .c28_amode directive, it changes the mode to C28x object mode
and remains in that mode until it encounters an .lp_amode directive or the end
of file.

Example In this example, C28x code is inserted in the existing C2xLP code.

; C2xLP source code
.lp_amode
LDP #VarA
LACL VarA
LAR AR0 *+, AR2
SACL *+
.
.
CALL FuncA
.
.
; The C2xLP code in function FuncA is replaced with C28x Code
; using C28x addressing (AMODE = 0)

.c28_amode ; Override the assembler mode to C28x syntax
FuncA:

C28ADDR ; Set AMODE to 0 C28x addressing
MOV DP, #VarB
MOV AL, @VarB
MOVL XAR0, *XAR0++
MOV *XAR2++, AL
.lp_amode ; Change back the assembler mode to C2xLP.
LPADDR ; Set AMODE to 1 to resume C2xLP addressing.
LRET

Code Examples

D-7C2xLP Migration Guidelines

D.4 Code Examples

D.4.1 Boot Code for C28x operating mode initalization

Note: The following code fragment must be placed in your code just after
reset. This code will place the device in the proper operating mode to execute
C2xLP converted code:
 Code Explanation
SETC OBJMODE ;C28OBJ = 1 enable 28x object mode
CLRC PAGE0 ;PAGE0 = 0 not relevant for 28x mode,
 ;cleared to zero
SETC AMODE ;AMODE = 1 enable C2xLP compatible
 ;addressing mode
SETC SXM ;SXM = 1 for C2xLP at reset, SXM = 0

;for 28x at reset
SETC C ;Carry bit =1 for C2xLP at reset,

;Carry bit = 0 for 28x at reset
SPM 0 ;Set product shift mode zero, that

is PM bits = 001 compatible to
;C2xLP PM reset;mode

D.4.2 IER/IFR Code

Table D−1. Code to Save Contents Of IMR (IER) And Disabling Lower Priority Interrupts At
Beginning Of ISR

C2xLP C28x
INTx: .

MAR *,AR1
LDP #0
LACL IMR
SACL *+
AND #~INT_MASK
SACL IMR

 .
.

INTx: .
AND IER,#~INT_MASK
.

Note: C28x saves IER as part of auto-
matic context save operation and dis-
ables the current interrupt automati-
cally to prevent recursive interrupts.

Table D−2. Code to Disable an Interrupt

C2xLP C28x
SETC INTM

LDP #0
LACL IMR
AND #~INTx
SACL IMR
CLRC INTM

AND IER,#~INTx

 ;operation is atomic and
 ;will not be interrupted.

Code Examples

Table D−3. Code to Enable an Interrupt

C2xLP C28x
SETC INTM

LDP #0
LACL IMR
OR #INTx
SACL IMR

CLRC INTM

OR IER,#INTx

;operation is atomic and
;will not be interrupted.

Table D−4. Code to Clear the IFR Register

C2xLP C28x
;write 1 to clear

SETC INTM
LDP #0
SPLK #0FFFFh,IFR

CLRC INTM

;write 0 to clear
AND IFR,#~INTx

;operation is atomic and
;will not be interrupted

D.4.3 Context Save/Restore

The C28x automatically saves a number of registers on each interrupt. To per-
form a full context save, some additional code must be added. Table D−5
shows a typical full context save and restore for both processors.

Code Examples

D-9C2xLP Migration Guidelines

Table D−5. Full Context Save/Restore Comparison

C2xLP Full Context Save/Restore C28x Full Context Save/Restore

INTx_ISR:
; context save

MAR *, AR1
MAR *+
SST #1,*+
SST #0,*+
SACH *+
SACL *+
SPH *+
SPL *+
MPY #1
SPL *+
SAR AR0, *+
SAR AR2, *+
SAR AR3, *+
SAR AR4, *+
SAR AR5, *+
SAR AR6, *+
SAR AR7, *+
.
;interrupt code goes here
.
.

; context restore
MAR *, AR1
MAR *−
LAR AR7, *−
LAR AR6, *−
LAR AR5, *−
LAR AR4, *−
LAR AR3, *−
LAR AR2, *−
LAR AR0, *−
SETC INTM
MAR *−
SPM 0
LT *+
MPY #1
LT *−
MAR *−
LPH *−
LACL *−
ADD *−, 16
LST #0, *−
LST #1, *−
CLRC INTM
RET

;C28x automatically saves the
;following registers:
;T,ST0,AH,AL,PH,PL,AR1,AR0,DP,ST1,
;DBGSTAT,IER,PC

INTx_ISR:
;interrupt context save

PUSH AR1H:AR0H ; 32−bit
PUSH XAR2 ; 32−bit
PUSH XAR3 ; 32−bit
PUSH XAR4 ; 32−bit
PUSH XAR5 ; 32−bit
PUSH XAR6 ; 32−bit
PUSH XAR7 ; 32−bit
PUSH XT ; 32−bit
.
.
;interrupt code goes here
.
.

;interrupt context restore
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
IRET

Reference Tables for C2xLP Code Migration Topics

D.5 Reference Tables for C2xLP Code Migration Topics

Table D−6 through Table D−10 explain the major differences between the
C2xLP and C28x architectures and in their respective code generation pro-
cess. These tables are organized to highlight the differences in interrupts, CPU
registers, memory maps, instructions, registers, and syntax. While migrating
the C2xLP code, check the tables for these key differences to make the neces-
sary changes to the source to avoid assembler or linker errors.

Table D−6. C2xLP and C28x Differences in Interrupts

Migration topic C2xLP C28x

1 Interrupt flag register IFR − Memory mapped register

Write 1 to clear bits set in IFR

IFR is a CPU register

Write 0 to clear bits set in IFR

2 Interrupt enable register IMR � Memory mapped register Renamed as IER and is a CPU regis-
ter

3 TRAP instruction Only one TRAP vector

TRAP

Affects:
INTM bit is not affected

multiple,32− TRAP vectors

TRAP 0, .. TRAP31

Affects:
INTM bit is set to 1

4 INTR instruction syntax INTR0

..

INTR31

Affects:
IFR not cleared

IMR not affected

INTM bit =1

INTR INT0

….

INTR INT31

Affects:
IFR cleared

IER affected

INTM bit =1

5 NMI Instruction NMI TRAP NMI

6 CLRC INTM instruction CLRC INTM instruction blocks
all interrupts until the next in-
struction is executed.

CLRC INTM
next_instn ;interrupts
 ;blocked
 ;until this
 ;executed

Interrupts enabled after the instruc-
tion

CLRC INTM

7 Interrupt enable and return
from interrupt service

CLRC INTM

RET

IRET

Reference Tables for C2xLP Code Migration Topics

D-11C2xLP Migration Guidelines

Table D−6. C2xLP and C28x Differences in Interrupts (Continued)

C28xC2xLPMigration topic

8 Interrupt enable and return
from function call

CLRC INTM

next_instn

next_instn

CLRC INTM

9 Interrupts Vector Uses Branch statements at the
vector address.
Ex: B Start ;assembly

 ;code
 ;
opcode in memory
 0x7980 ;branch
 ;instruction
 0x0040 ;branch

 ;address

32−bit absolute addresses.

 ; code in vector location

0x0040 (low address)

0x003F (high address)

10 Context save No automatic context save

See section D.3 for a full context
save/restore example

Automatic context save of CPU regis-
ters T, ST0, AH, AL, PH, PL, AR1,
AR0, DP, ST1, DBGSTAT, IER, PC

See Table D−5 for a full context save/
restore example

Table D−7. C2xLP and C28x Differences in Status Registers

Migration topic C2xLP C28x

1 Saving ST0/ST1 registers Save:
SST #0,mem ;store ST0
SST #1,mem ;store ST1
Restore:
LST #0,mem ;load ST0
LST #1,mem ;load ST1

Save:
PUSH ST ;store ST0 to stack
PUSH ST ;store ST1 to stack
Restore:
POP ST1 ;load ST1
 ;from stack
POP ST0 ;load ST0
 ;from stack

2

ST0/ST1 bit differences ST0/ST1 bits have CPU registers
and status bits

ST0/ST1 bits are rearranged
compared to C2xLP registers.

Reference Tables for C2xLP Code Migration Topics

Table D−7. C2xLP and C28x Differences in Status Registers (Continued)

3 INTM bit in ST0 Cannot be saved if ST0 register
is saved

Saved along with ST0 register

4 Data page pointer

DP save

DP save/restored along with
ST0.
SST #0,mem ;store ST0

LST #0,mem ;load ST0

DP is a register, hence explicit store/
restore is required.
PUSH DP ;store DP
 ;to stack
PUSH DP:ST1 ; 32−bit
 ; save
POP DP ;load DP from
 ;stack
POP DP:ST1 ; 32−bit
 ; restore

Table D−8. C2xLp and C28x Differences in Memory Maps

Migration topic C2xLP C28x

1 Program memory 16−bit address

Size : 64kx16

Range :0x0000−0xFFFFh

22 � bit address

Size : 64kx16

mapped to Range :

0x3F 0000h � 0x3F FFFFh

2 Data memory Size : 64kx16

Range :0x0000−0xFFFFh

Size : 64kx16

mapped to Range :

0x00 0000h � 0x00 FFFFh

6 B2 Block Size: 32 words

Range: 0x0060−0x007F

Located in M0 Block 1Kx16

Size: 1K words

Range:

0x00 0060 �0x00 07Fh

7 B1 Block Size: 256 words

Range: 0x0100−0x01FF

(mirrored)

 : 0x0200−0x02FF

Located in M0 Block − 1Kx16

Not Mirrored

Range:

0x00 0200 �0x00 02FFh

8 B0 Block Mirrored locations

Size: 256 words

Range: 0x0300−0x03FF

 : 0x0400−0x04FF

Located in M0 Block − 1Kx16

Not Mirrored

Range:

0x00 0300 �0x00 03FFh

Reference Tables for C2xLP Code Migration Topics

D-13C2xLP Migration Guidelines

Table D−8. C2xLp and C28x Differences in Memory Maps (Continued)

C28xC2xLPMigration topic

9 CNF bit mapping of B0
Block

CNF bit maps B0 in data and
program memory

CNF =0 − B0 in data memory

Range: 0x0300−0x03FF

 : 0x0400−0x04FF

CNF =1 − B0 in program memory

Range: 0xFE00−0xFEFF

 : 0xFF00−0xFFFF

Not applicable

10 Vector table range Size: 32x16 words

Range: 0x0000−0x003F

Size 32x32 words

0x3F FFC0 � 0x3F FFFF − at reset

In C28x based DSP devices may use
additional expanded vector table
(e.g., PIE)

11 Internal SARAM mapping
in data memory

Mapped as internal memory map Reserved for emulation registers

Range : 0x0800 −0x1000h

5 I/O space Range : 0x0000 −0xFFFFh Range : 0x0x00 000 −0x00 FFFFh

I/O Space may or may not be imple-
mented on a particular device. See
the device datasheet for details.

6 Global space Range : 0x8000 −0xFFFFh Implemented via the XINTF

Global Space may or may not be im-
plemented on a specific C28x device.
See the device datasheet for details.

Table D−9. C2xLP and C28x Differences in Instructions and Registers

Migration topic C2xLP C28x

1 Conditional Instructions

Branches, Calls, Returns

Can take more than one condi-
tion in these instructions

The C28x assembler will automatical-
ly break the instructions into multiple
instructions.

2 When are CPU Flags up-
dated?

Conditional flags update on Ac-
cumulator operation only

Conditional flags update on Accumu-
lator, register and memory operations

3 Repeat instructions Many instructions are repeatable Same instructions are repeatable.
For additional repeatable instructions
see Table E−3.

Reference Tables for C2xLP Code Migration Topics

Table D−9. C2xLP and C28x Differences in Instructions and Registers (Continued)

C28xC2xLPMigration topic

4 GREG register Memory mapped register Memory mapped register in XINTF

Global Space may or may not be im-
plemented on a particular device.
See the device data sheet for details.

5 ARx registers ARx registers are 16−bit only

LAR AR1, #0FFFFh
ADRK #1

Result:
AR1 = 0x0000h

XARn registers are 32 bits. Some in-
structions access only the lower
16 bits known as ARn
MOV XAR1, #0FFFFh
ADD XAR1,#1

Result:
XAR1 = 0x10000h

6 2s complement subtraction
to ARx

LAR AR1, #0FFFFh
ADRK #0FE

Result:
AR1 = 0xFFFDh

MOV XAR1, #0FFFFh
ADD XAR1,#0FE

Result:
XAR1 = 0x1FFFDh

7 I/O instructions Supports IN, OUT instructions Supports IN, OUT,UOUT

I/O Space may or may not be imple-
mented on a particular device. See
the device datasheet for details.

8 Stack Uses 8−deep Hardware stack

C2xLP Compiler uses AR1 as
Stack Pointer

Uses software stack pointer register
(SP)

Compiler will use SP register, as
stack pointer

9 Program counter 16 bits in size

B 5000h ; Branch to 5000

 ; address

22 bits in size

The C28x assembler will use special
C2xLP compatible instructions that
force the upper program address
lines to 0x3F thus creating a 16−bit
C2xLP compatible PC.

B 0x3F5000 ;

or

XB 5000h

Reference Tables for C2xLP Code Migration Topics

D-15C2xLP Migration Guidelines

Table D−10. Code Generation Tools and Syntax Differences

Migration topic C2xLP C28x

1 Mnemonic Source or destination not always
specified.

LACL, source

SACL, destination

Instructions are always of the form

mnemonic destination, source

MOV destination,source

2 Direct addressing syntax
−@ symbol

LACL dma MOV ACC, @@dma ; C2xLP mode

MOV ACC, @dma ; 28x mode

@@ − means 128 word data page

 @ − means 64 word data page

3 Indirect address

pointer buffer, ARB

In indirect addressing, Auxiliary
register will be pointed by ARP
register in ST0. ARB is ARP
pointer buffer in ST1.

MAR *,AR2 ; ARP =AR2

LACL *

No ARB equivalent in 28x.

Selected ARx is referenced in the in-
struction itself.

MOV ACC,*AR2

4 New Address pointers

syntax − *(0

BLDD #4545h,RegA MOV @REGA, *(0:0x4545)

5 Repeat instructions

syntax change − ||

No additional syntax
RPT #5
NOP

Uses || syntax with repeat instruc-
tions
 RPT #5
|| NOP

6 Reserved register names

Application code should
not use these reserved
words

ST0, ST1, IFR, IMR, GREG ST0, ST1, AH, AL, PH, PL,T, TL,

XAR0, XAR1, XAR2, XAR3, XAR4,

XAR5, XAR6, XAR7, DP, ST1,

DBGSTAT, IER, PC, RPC

7 Increment/Decrement

syntax change

MAR *,AR2

LACL *+

….

LACL *−

MOV ACC, *AR2++

…..

MOV ACC, *AR2−−

8 Shift syntax change LACL dma, 4 MOV ACC,dma <<4

Reference Tables for C2xLP Code Migration Topics

Table D−10. Code Generation Tools and Syntax Differences (Continued)

C28xC2xLPMigration topic

9 Number radix usage x .set 09 ;Assembler
 ;accepts
 ;this as
 ;decimal 9

x .set 9

Avoid leading zeros, else the assem-
bler will be use this as octal number.

10 Order of precedence in ex-
pressions � Syntax change

Expressions in assembly state-
ments do not require parenthesis.
x .set A<<B = C>>D

Expressions in assembly statements
do require parenthesis.
x .set (A<<B = C>>D)

11 Tools Directives .mmregs ; reserved register use

.port

.globl

not applicable

not applicable

.global

12 Macros Useful in coding style Useful in coding style

All C2xLP Macros are not directly
used

Convert them individually to 28x
mode.

13 Assembler options −v2xx −m20, −v28

E-1

Appendix A

C2xLP Instruction Set Compatibility

This appendix highlights the differences in syntax between the C2xLP and the
C28x instructions, and details which C2xLP compatible instructions are re-
peatable on the C28x. The C28x assembler accepts both C28x and C2xLP as-
sembly source syntax. This enables you to quickly port C2xLP code with mini-
mal effort. Additionally, all compatible C2xLP instructions have an equivalent
C28x style syntax. The C28x disassembler will show the C28x equivalent syn-
tax.

Topic Page

E.1 Condition Tests on Flags E-2.

E.2 C2xLP vs. C28x Mnemonics E-3.

E.3 Repeatable Instructions E-9.

Appendix E

Condition Tests on Flags

E.1 Condition Tests on Flags

On the C28x, all EQ/NEQ/GT/LT/LEQ conditional tests are performed on the
state of the Z and N flags. On the C2xLP, the same condition tests are per-
formed on the contents of the ACC register.

Table E−1. C28x and C2xLP Flags

Designation C28x Modes C2xLP Equivalent

NEQ != 0 ACC != 0

EQ == 0 ACC == 0

GT > 0 ACC > 0

GEQ >= 0 ACC >= 0

LT < 0 ACC < 0

LEQ <= 0 ACC <= 0

HI higher −

HIS, C higher or same, carry set C == 1

LO, NC lower, carry clear C == 0

LOS lower or same −

NOV no overflow OV == 0

OV overflow OV == 1

NTC TC == 0 TC == 0

TC TC == 1 TC == 1

NBIO test BIO input == 0 BIO == 0

UNC unconditional UNC

On the C28x, the Z and N flags are set on all ACC operations. That includes
ACC loads. Therefore, the Z and N flags reflect the current state of the ACC
immediately after an operation on the ACC.

Condition Tests on Flags

E-3C2xLP Instruction Set Compatibility

E.2 C2xLP vs. C28x Mnemonics
Table E−2 lists the C2xLP instructions with the C28x equivalent syntax. The
C28x assembler will accept either the C2xLP syntax or the equivalent C28x
syntax. The disassembler will decode and display the C28x syntax.

The C2xLP cycle count numbers shown are for zero wait-state internal
memory, where n equals the number of repetitions (i.e., if an instruction is re-
peated, using the RPT instruction for repeatable instructions, n times it is exe-
cuted n+1 times).

Table E−2. C2xLP Instructions and C28x Equivalent Instructions

C2xLP C28x

Instruc-
tion

Mnemonic Cycles Size Instruc-
tion

Mnemonic Cycles Size

ABS n+1 16 ABS ACC 1 16

ADD loc16[,0] n+1 16 ADD ACC,loc16 {<<0} n+1 16

ADD loc16,1..15 n+1 16 ADD ACC,loc16 << 1..15 n+1 32

ADD loc16,16 n+1 16 ADD ACC,loc16 << 16 n+1 16

ADD #8bit 1 16 ADDB ACC,#8bit 1 16

ADD #16bit[,0..15] 2 32 ADD ACC,#16bit {<<0..15} 1 32

ADDC loc16 n+1 16 ADDCU ACC,loc16 1 16

ADDS loc16 n+1 16 ADDU ACC,loc16 n+1 16

ADDT loc16 n+1 16 ADD ACC,loc16 << T n+1 32

ADRK #8bit 1 16 ADRK #8bit 1 16

AND loc16 n+1 16 AND ACC,loc16 n+1 16

AND #16bit,16 2 32 AND ACC,#16bit<<16 1 32

AND #16bit[,0..15] 2 32 AND ACC,loc16 {<< 0..15} 1 32

APAC n+1 16 ADDL ACC,P<<PM n+1 16

B pma 4 32 XB pma,UNC 7 32

B pma,*,ARn 4 32 XB pma,*,ARPn 4 32

B pma,*ind 4 32 NOP
XB

*ind
pma, UNC

8 32

B pma,*ind,ARn 4 32 NOP
XB

*ind
pma,*,ARPn

5 48

� True/False

Condition Tests on Flags

Table E−2. C2xLP Instructions and C28x Equivalent Instructions (Continued)

C2xLP C28x

Instruc-
tion

SizeCyclesMnemonicInstruc-
tion

SizeCyclesMnemonic

BACC 4 16 XB *AL 7 16

BANZ pma,*ind[,ARn] 4/2 32 XBANZ pma,*ind[,ARAPn] 4/2 32

BANZ pma,*BR0+/*BR0−[,ARn] 4/2 32 Not applicable

BCND pma[,COND] 4/2 32 XB
or

pma,COND 7/4 32
or
SB #8bitOff,COND 16

BCND pma,COND1,COND2,..,
CONDn

4/2 32 SB
 SB
 .
 XB
skip:

skip,opposite of COND1
skip,opposite of COND2
.
pma,CONDn

7+ 48+

BIT loc16,15−bit n+1 16 TBIT loc16,#bit 1 16

BITT loc16 n+1 16 TBIT loc16,T 1 32

BLDD #src_addr,loc16 n+3 32 MOV loc16,*(0:src_addr) n+2 32

BLDD loc16,#dest_addr n+3 32 MOV *(0:dest_addr),loc16 n+2 32

BLPD #pma,loc16 n+3 32 XPREAD loc16,*(pma) n+2 32

CALA 4 16 XCALL *AL 7 16

CALL pma 4 32 XCALL pma,UNC 7 32

CALL pma,*,ARn 4 32 XCALL pma,*,ARPn 4 32

CALL pma,*ind 4 32 NOP
XCALL

*ind
 pma,UNC

8 48

CALL pma,*ind,ARn 4 32 NOP
XCALL

*ind
 pma,*,ARPn

5 48

CC pma,COND 4/2 32 XCALL pma,COND 7/4 32

CC pma,COND1,..,CONDn 4/2 32 SB

 SB

 .
 XCALL
skip:

 skip,opposite of COND1
 skip,opposite of COND2

 pma,CONDn

7+ 48+

CLRC INTM n+1 16 See Table D−6.

� True/False

Condition Tests on Flags

E-5C2xLP Instruction Set Compatibility

Table E−2. C2xLP Instructions and C28x Equivalent Instructions (Continued)

C2xLP C28x

Instruc-
tion

SizeCyclesMnemonicInstruc-
tion

SizeCyclesMnemonic

CLRC XF/OVM/SXM/TC/C n+1 16 CLRC XF/OVM/SXM/TC/C 2,1 16

CLRC CNF n+1 16 Not applicable

CMPL n+1 16 NOT ACC 1 16

CMPR 0/1/2/3 n+1 16 CMPR 0/1/2/3 1 16

DMOV loc16 n+1 16 DMOV loc16 n+1 16

IDLE 1 16 IDLE 5 16

IN loc16,PA 2(n+1) 32 IN loc16,*(PA) n+2 32

INTR K 4 16 Not applicable

LACC

loc16[,0] n+1 16 MOV ACC,loc16 [<< 0] 1 16

LACC loc16,1..15 n+1 16 MOV ACC,loc16 << 1..15 1 32

LACC loc16,16 n+1 16 MOV ACC,loc16 << 16 1 16

LACC

#16bit,0..15 2 32 MOV ACC,#16bit << 0..15 1 32

LACL loc16 n+1 16 MOVU ACC,loc16 1 16

LACL #8bit 1 16 MOVB ACC,#8bit 1 16

LACT loc16 n+1 16 MOV ACC,loc16 << T 1 32

LAR ARn,loc16 2(n+1) 16 MOVZ ARn,loc16 1 16

LAR ARn,#8bit 2 16 MOVB XARn,#8bit 1 16

LAR ARn,#16bit 2 32 MOVL XARn,#22bit 1 32

LDP loc16 2(n+1) 16 Not applicable

LDP #9bit 2 16 MOVZ DP,#10bit >> 1 1 16

LPH loc16 n+l 16 MOV PH,loc16 1 16

LST #0/1,loc16 2(n+1) 16 See Table D−7

LT loc16 n+l 16 MOV T,loc16 1 16

LTA loc16 n+l 16 MOVA T,loc16 n+1 16

� True/False

Condition Tests on Flags

Table E−2. C2xLP Instructions and C28x Equivalent Instructions (Continued)

C2xLP C28x

Instruc-
tion

SizeCyclesMnemonicInstruc-
tion

SizeCyclesMnemonic

LTD loc16 n+l 16 MOVAD T,loc16 1 16

LTP loc16 n+l 16 MOVP T,loc16 1 16

LTS loc16 n+l 16 MOVS T,loc16 n+1 16

MAC pma,loc16 n+3 32 XMAC P,loc16,*(pma) n+2 32

MACD pma,loc16 n+3 32 XMACD P,loc16,*(pma) n+2 32

MAR *ind[,ARn] n+l 16 NOP *ind[,ARPn] n+1 16

MPY loc16 n+l 16 MPY P,T,loc16 1 16

MPY #13bit 1 16 MPY P,@T,#16bit 1 32

MPYA loc16 n+l 16 MPYA P,T,loc16 n+1 16

MPYS loc16 n+l 16 MPYS P,T,loc16 n+1 16

MPYU loc16 n+l 16 MPYU P,T,loc16 1 16

NEG n+l 16 NEG ACC 1 16

NMI 4 16 Not applicable

NOP n+l 16 NOP n+1 16

NORM */*+/*−/*0+/*0− n+l 16 NORM ACC,*/*++/*−−/*0++/*0−− n+4 16

NORM *BR0+/*BR0− n+l 16 Not applicable

OR loc16 n+l 16 OR ACC,loc16 n+1 16

OR #16bit,16 2 32 OR ACC,#16bit<<16 1 32

OR #16bit[,0..15] 2 32 OR ACC,#16bit {<< 0..15} 1 32

OUT loc16,PA 3(n+1) 32 OUT *(PA),loc16 4 32

PAC n+l 16 MOV ACC,P<<PM 1 16

POP n+l 16 MOVU ACC,*−−SP 1 16

POPD loc16 n+l 16 POP loc16 2 16

PSHD loc16 n+l 16 PUSH loc16 2 16

PUSH n+l 16 MOV *SP++,AL n+1 16

� True/False

Condition Tests on Flags

E-7C2xLP Instruction Set Compatibility

Table E−2. C2xLP Instructions and C28x Equivalent Instructions (Continued)

C2xLP C28x

Instruc-
tion

SizeCyclesMnemonicInstruc-
tion

SizeCyclesMnemonic

RET 4 16 XRETC UNC 7 16

RETC COND 4/2� XRETC COND 7/4 16

RETC COND1,COND2,..,CONDn 4/2 16 SB
 SB
 .
 XRETC
$10:

 $10,opposite of COND1
 $10,opposite of COND2
 .
 CONDn

7+ 48+

ROL n+l 16 ROL ACC n+1 16

ROR n+l 16 ROR ACC n+1 16

RPT loc16 1 16 RPT loc16 1 16

RPT #8bit 1 16 RPT #8bit 1 16

SACH loc16[,0] n+l 16 MOV loc16,AH n+1 16

SACH loc16,1 n+l 16 MOVH loc16,ACC << 1 n+1 16

SACH loc16,2..7 n+l 16 MOVH loc16,ACC << 2..7 n+1 32

SACL loc16[,0] n+l 16 MOV loc16,AL n+1 16

SACL loc16,1 n+l 16 MOV loc16,ACC << 1 n+1 16

SACL loc16,2..7 n+l 16 MOV loc16,ACC << 2..7 n+1 32

SAR ARn,loc16 n+l 16 MOV loc16,ARn 1 16

SBRK #8bit 1 16 SBRK #8bit 1 16

SETC INTM n+l 16 SETC INTM 2 16

SETC XF/OVM/SXM/TC/C n+l 16 SETC XF/OVM/SXM/TC/C 2,1 16

SETC CNF n+l 16 Not applicable

SFL n+l 16 LSL ACC,1 n+1 16

SFR n+l 16 SFR ACC,1 n+1 16

SPAC n+l 16 SUB ACC,P<<PM n+1 16

SPH loc16 n+l 16 MOVH loc16,P n+1 16

SPL loc16 n+l 16 MOV loc16,P n+1 16

� True/False

Condition Tests on Flags

Table E−2. C2xLP Instructions and C28x Equivalent Instructions (Continued)

C2xLP C28x

Instruc-
tion

SizeCyclesMnemonicInstruc-
tion

SizeCyclesMnemonic

SPLK #0x0000,loc16 2 32 MOV loc16,#0 n+1 16

SPLK #16bit,loc16 2 32 MOV loc16,#16bit n+1 32

SPM 0 1 16 SPM 0 1 16

SPM 1 1 16 SPM 1 (or +1) 1 16

SPM 2 1 16 SPM 2 (or +4) 1 16

SPM 3 1 16 SPM 3 (or −6) 1 16

SQRA loc16 n+l 16 SQRA loc16 n+1 32

SQRS loc16 n+l 16 SQRS loc16 n+1 32

SST #0/1,loc16 n+l 16 Not applicable

SUB loc16[,0] n+l 16 SUB ACC,loc16 {<< 0} n+1 16

SUB loc16,1..15 n+l 16 SUB ACC,loc16 << 1..15 n+1 32

SUB loc16,16 n+l 16 SUB ACC,loc16 << 16 n+1 16

SUB #8bit 1 16 SUBB ACC,#8bit 1 16

SUB #16bit[,0..15] 2 32 SUB ACC,#16bit {<< 0..15} 1 32

SUBB loc16 n+l 16 SUBU ACC,loc16 1 16

SUBC loc16 n+l 16 SUBCU ACC,loc16 n+1 16

SUBS loc16 n+l 16 SUBU ACC,loc16 n+1 16

SUBT loc16 n+l 16 SUB ACC,loc16 << T n+1 32

TBLR loc16 n+3 16 XPREAD loc16,*AL n+4 32

TBLW loc16 n+3 16 XPWRITE *AL,loc16 n+4 32

TRAP 4 16 Not applicable

XOR loc16 n+l 16 XOR ACC,loc16 n+1 16

XOR #16bit,16 2 32 XOR ACC,#16bit<<16 1 32

XOR #16bit[,0..15] 2 32 XOR ACC,#16bit [<< 0..15] 1 32

ZALR loc16 n+l 16 ZALR ACC,loc16 1 32

� True/False

Repeatable Instructions

E-9C2xLP Instruction Set Compatibility

E.3 Repeatable Instructions

Not all of the repeatable instructions on the C2xLP are repeatable on the C28x.
The ones that were not made repeatable do not make sense to repeat from
a functionality standpoint. Also, some instructions that were not repeatable on
the C2xLP are repeatable on the C28x.

Table E−3 shows which C2xLP operations are repeatable, and which ones are
repeatable on the C28x.

Table E−3. Repeatable Instructions for the C2xLP and C28x

C2xLP Instruction
C2xLP

Repeatable
C28x

Repeatable

ABS X

ADD mem,shift1 X X

ADDC mem X

ADDS mem X X

ADDT mem X X

AND mem X X

APAC X X

BIT mem,bit_code X

BITT mem X

BLDD #addr,mem X X

BLDD mem,#addr X X

BLPD #pma,mem X X

CLRC CNF/XF/INTM/OVM/SXM/TC/C X

CMPL X

CMPR constant X

DMOV mem X X

IN mem,PA X X

INTR K X

LACC mem[,shift1] X

LACL mem X

Repeatable Instructions

Table E−3. Repeatable Instructions for the C2xLP and C28x (Continued)

C2xLP Instruction
C2xLP

Repeatable
C28x

Repeatable

LACT mem X

LAR AR,mem X

LDP mem X

LPH mem X

LST #n,mem X

LT mem X

LTA mem X X

LTD mem X

LTP mem X

LTS mem X X

MAC pma,mem X X

MACD pma,mem X X

MAR {ind}[,nextARP] X X

MPY mem X

MPY #k X

MPYA mem X X

MPYS mem X X

MPYU mem X

NEG X

NOP X X

NORM {ind} X X

OR mem X X

OUT mem,PA X X

PAC X

POP X

POPD mem X

Repeatable Instructions

E-11C2xLP Instruction Set Compatibility

Table E−3. Repeatable Instructions for the C2xLP and C28x (Continued)

C2xLP Instruction
C2xLP

Repeatable
C28x

Repeatable

PSHD mem X

PUSH X

ROL X X

ROR X X

SACH mem[,shift] X X

SACL mem[,shift] X X

SAR AR,mem X

SETC CNF/XF/INTM/OVM/SXM/TC/C X

SFL X X

SFR X X

SPAC X X

SPH mem X X

SPL mem X X

SPLK #lk,mem X X

SQRA mem X X

SQRS mem X X

SST #n,mem X

SUB mem[,shift1] X X

SUBB mem X

SUBC mem X X

SUBS mem X X

SUBT mem X X

TBLR mem X X

TBLW mem X X

XOR mem X X

ZALR mem X

F-1

Appendix A

Migration From C27x to C28x

This appendix highlights the architecture differences between the C27x and
the C28x and describes how to migrate your code from a C27x-based design
to a C28x-based design.

Topic Page

F.1 Architecture Changes F-2.

F.2 Moving to C28x Object F-9.

F.3 Migrating to C28x Object Code F-11.

F.4 Compiling C28x Source Code F-16.

Appendix F

Architecture Changes

F.1 Architecture Changes

Certain changes to the architecture that are important when migrating from the
C27x to the C28x include:
� Changes to registers
� Full context save and restore
� B0/B1 memory map consideration

F.1.1 Changes to Registers

The register modifications from the C27x are shown in Figure F−1. Shaded
registers highlight the changes or enhancements for the C28x.

Figure F−1. C28x Registers

T(16) IER(16)

DBGIER(16)

IFR(16)

PC(22)

AR7(16)

AR6(16)

AR5(16)

AR4(16)

AR3(16)

AR2(16)

AR1(16)

AR0(16)

ST0(16)

ST1(16)

AR0H(16)

AR1H(16)

AR2H(16)

AR3H(16)

AR4H(16)

AR5H(16)

TL(16) XT(32)

P(32)PH(16) PL(16)

AH(16) AL(16) ACC(32)

XAR0(32)

XAR1(32)

XAR2(32)

XAR3(32)

XAR4(32)

XAR5(32)

XAR6(32)

XAR7(32)

RPC(22)

AR6H(16)

AR7H(16)

6/7bit
offsetDP(16)

SP(16)

Architecture Changes

F-3Migration From C27x to C28x

A brief description of the register modifications is given below:

XT(32), TL(16): The T register is increased to 32-bits and called the XT register. The existing C27x T register
portion represents the upper 16-bits of the new 32-bit register. The additional 16-bits, called
the TL portion, represents the lower 16-bits.

XAR0,..,XAR7(32): All of the AR registers are stretched to 32-bits. This enables a full 22-bit address. For
addressing operations, only the lower 22-bits of the registers are used, the upper 10-bits
are ignored. For operations between the ACC, all 32-bits are valid (register addressing
mode @XARx). For 16-bit operations to the low 16-bit of the registers (register addressing
mode @ARx), the upper 16-bits are ignored.

RPC(22): This is the return PC register. When a call operation is performed, the return address is
saved in the RPC register and the old value in the RPC is saved on the stack (in two 16-bit
operations). When a return operation is performed, the return address is read from the RPC
register and the value on the stack is written into the RPC register (in two 16-bit operations).
The net result is that return operations are faster (4 instead of 8 cycles)

SP(16): By default the C28x SP register is initialized to 0x400 after a reset.

ST0 (16): Shaded items indicate a change or addition from the C27x

Table F−1. ST0 Register Bits

Bit(s) Mnemonic Description Reset Value R/W

0 SXM Sign Extension Mode Bit 0 R/W

1 OVM Overflow Mode Bit 0 R/W

2 TC Test Control Bit 0 R/W

3 C Carry Bit 0 R/W

4 Z Zero Condition Bit 0 R/W

5 N Negative Condition Bit 0 R/W

6 V Overflow Condition Bit 0 R/W

9:7 PM Product Shift Mode 0 (+1 shift) R/W

15:10 OVC/OVCU ACC Overflow Counter 0 R/W

PM: Functionality of the Product Shift Mode changes if the AMODE bit in ST1 is set to 1. C27x
users will not modify the AMODE bit and PM will function as they did on the C27x.

OVC/OVCU: The overflow counter is modified so that it behaves differently for signed or unsigned
operations. For signed operations (OVC), it behaves as it does on the C27x (increment
for positive overflow, decrement for negative underflow of a signed number). For
unsigned operations (OVCU), the overflow counter increments for an ADD operation
when there is a carry generated and decrements for a SUB operation when a borrow is
generated. Basically, in unsigned mode, the OVCU behaves like a carry (C) counter and
in signed mode the OVC behaves like an overflow (V) counter.

Architecture Changes

Table F−2. ST1 Register Bits

Bit(s) Syntax Description Reset Value R/W

0 INTM Interrupt Enable Mask Bit 1 (disabled) R/W

1 DBGM DeBug Enable Mask Bit 1 (disabled) R/W

2 PAGE0 PAGE0 Direct/Stack Address Mode 0 R/W

3 VMAP Vector Map Bit VMAP input R/W

4 SPA Stack Pointer Align Bit 0 R/W

5 LOOP Loop Instruction Status Bit 0 R

6 EALLOW Emulation Access Enable Bit 0 R/W

7 IDLESTAT IDLE Status Flag Bit 0 R

8 AMODE Address Mode Bit 0 R/W

9 OBJMODE Object Compatibility Mode Bit 0 R/W

10 RESERVED Reserved for future use 0 R

11 M0M1MAP M0 and M1 Mapping Mode Bit 1 R

12 XF XF Status Bit 0 R/W

15:13 ARP Auxiliary Register Pointer 0 R/W

AMODE: This mode selects the appropriate addressing mode decodes for compatibility with the
C2xLP device. For all C27x/C28x based projects leave this bit as 0.

OBJMODE: This mode is used to select between C27x object mode (OBJMODE == 0) and C28x
object mode (OBJMODE == 1) compatibility. This bit is set by the �C28OBJ� (or �SETC
OBJMODE�) instructions. This bit is cleared by the �C27OBJ� (or �CLRC OBJMODE�)
instructions. The pipeline is flushed when setting or clearing this bit using the given
instructions. This bit can be saved and restored by interrupts and when restoring the ST1
register. This bit is set to 0 on reset.

M0M1MAP: This mode is used to remap block M0 and M1 in program memory space as discussed
in detail in section F.1.2. This bit is set by the �C28MAP� (or �SETC M0M1MAP�)
instructions. This bit is cleared by the �C27MAP� (or �CLRC M0M1MAP�) instructions.
The pipeline is flushed when setting or clearing this bit using the given instructions. This
bit cannot be restored by interrupts and when restoring the ST1 register (read only).

XF: This bit reflects the current state of the XFS output signal. This signal is for C2xLP
compatibility and is not used by C27x users.

Architecture Changes

F-5Migration From C27x to C28x

F.1.2 Full Context Save and Restore

On both C27x and C28x, the registers in Figure F−2 are automatically saved
on the stack on an interrupt or trap operation and automatically restored on an
IRET instruction.

Figure F−2. Full Context Save/Restore

31 16 1 0

T ST0

AH AL

PH PL

AR1 AR0

DP ST1

DBGSTAT IER

PCH PCL

Due to the register changes described in section F.1.1. C28x additional regis-
ters must be saved for a full-context store. Figure F−3 shows the difference
between a C27x and C28x full-context save/restore for an interrupt or trap.

Architecture Changes

Figure F−3. Code for a Full Context Save/Restore for C28x vs C27x

C28x Full Context Save/Restore
−−
IntX: ; 8 cycles

PUSH AR1H:AR0H ; 32−bit
PUSH XAR2 ; 32−bit
PUSH XAR3 ; 32−bit
PUSH XAR4 ; 32−bit
PUSH XAR5 ; 32−bit
PUSH XAR6 ; 32−bit
PUSH XAR7 ; 32−bit
PUSH XT ; 32−bit

 ; + 8 = 16 cycles
.
.
.
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
IRET
; 16 cycles

C27X Full Context Save/Rest
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IntX: ; 8 cycles
push AR3:AR2

push AR5:AR4
push XAR6
push XAR7

 ; + 4 = 12 cycles
.
.
.
pop XAR7
pop XAR6
pop AR5:AR4
pop AR3:AR2
iret
; 12 cycles

If you perform a task-switch operation (stack changes), the RPC register must
be manually saved. You are not to save the RPC register if the stack is not
changed.

F.1.3 B0/B1 Memory Map Consideration

Another architecture change to consider is the C27x mapping of blocks B0 and
B1. To avoid confusion, on the C28x these blocks are known as M1 and M0
respectively. On the C27x, block B1 was mapped to only data space and block
B0 was mapped both in program and data space. In addition, block B0 was
mapped to different address ranges in program and in data space. The C27x
mapping of these blocks is shown in Figure F−4.

Architecture Changes

F-7Migration From C27x to C28x

Figure F−4. Mapping of Memory Blocks B0 and B1 on C27x

B0 B1

B0

C27x

Program Space Data Space
00 0000

00 0400

00 07FF

On a C28x device at reset, these blocks are mapped uniformly in both program
and data space as shown in Figure F−5. This can cause issues when running
C27x object code that relies on the C27x mapping. If your code relies on this
mapping, you can flip-block M0 and M1 in program space only by clearing the
M0M1MAP bit in status register 1 (ST1) to a 0. Executing the �C27MAP� (or
�CLRC M0M1MAP�) instruction is the only way to clear this bit. With
M0M1MAP == 0, the mapping is compatible with the C27x B0 and B1 blocks
as shown in Figure D-4. Remember that after a reset M0 and M1 revert to the
C28x mapping.

It is strongly recommended that you migrate your code to use the default C28x
mapping of these blocks and not rely on the compatible mapping.

Figure F−5. C27x Compatible Mapping of Blocks M0 and M1

M0 M0

M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

00 0400

00 07FF

C27x Compatible Mapping
(M0M1MAP = 0)

M1 M0

M1

Program Space Data Space
00 0000

00 0400

00 07FF

M0M1

Architecture Changes

F.1.4 C27x Object Compatibility

At reset, the C28x operates in C27x object mode (OBJMODE == 0). In this
mode, the C28x CPU is 100% object-code compatible and cycle-count com-
patible with the C27x. In this case, you will compile your code just as you would
for a C27x design as shown in Figure F−6.

Figure F−6. Building a C27x Object File From C27x Source

CL2000-V27
C27x Source

Code
(.asm .c .cpp)

C27x Object
(.out)

−v27 Accepts C27x syntax only. Generates C27x object only (assumes OBJMODE = 0)

Once you have taken the mapping of blocks M0 and M1 into account as previously
described, you can simply load the C27x object (.out) code into the C28x and run it. When
using the C27x compatible mode, you are limited to the C27x instruction set. To take
advantage of advanced C28x operations, you should migrate to C28x object code.

When the device is operating in C27x object mode (OBJMODE == 0), the upper bits of the
stretched registers (XAR0(31:16) to XAR5(31:16), XAR6(31:22), XAR7(31:22)) are
protected from writes. Hence, if the registers are set to zero by a reset then the XARn
pointers behave like they do on the C27x and overflow problems are not of concern.

Moving to a C28x Object

F-9Migration From C27x to C28x

F.2 Moving to a C28x Object

The C28x instruction set is a superset of the C27x instruction set. The syntax
of a number of instructions however has changed slightly due to the modifica-
tions in registers as previously described. (For a summary of syntax changes,
see Section F.3.1 Instruction Syntax Changes). To quickly move to C28x ob-
ject code, the codegen tools allow you to build a C28x object file with a switch
allowing for C27x source syntax:

Figure F−7. Building a C28x Object File From Mixed C27x/C28x Source

CL2000
−V28 −m27

C27x/C28x
Source Code

(.asm .c .cpp)

C28x Object
(.out)

−v28−m27 Accepts C28x & C27x syntax. Generates C28x object only (assumes OBJMODE == 1)

Prior to running C28x object you must set the mode of the device appropriately (OBJMODE
== 1). To do this, you set the OBJMODE bit in ST1 to 1 after reset. This can be done with
a �C28OBJ� (or �SETC OBJMODE�) instruction. Note that before the �C28OBJ� instruction
is executed, the disassembly window in the debugger may display incorrect information.
This is because the debugger will decode memory as C27x opcodes until after you execute
the �C28OBJ� instruction.

When running in this mode, the disassembly window in your debugger will show the C28x
instruction syntax for all instructions. For example, the C27x MOV AR0,@SP instruction
will look like MOVZ AR0,@SP, which is the C28x-equivalent instruction.

Now that you are using a C28x object file, you can add C28x operations to your source
code.

F.2.1 Caution When Changing OJBMODE

On reset, the XARn registers are forced to 0x0000 0000 and
OBJMODE == 0. When operating in C27x compatible mode (OBJMODE ==
0), the upper bits of the XARn registers are protected from writes. Some things
to be aware of when changing OBJMODE:

� When operating in C28x object mode (OBJMODE == 1) overflow can oc-
cur to the extended portion of XARn registers and program execution is
not specified. This would be an issue for assembly code that is reassem-
bled in C28x mode when you relied on the fact that C27x registers were
a certain size.

� If the user switches to C28x object mode (OBJMODE == 1), then the upper
bits of XARn registers may be modified. If you then switch back to C27x

Moving to a C28x Object

mode (OBJMODE == 0), the upper bits of XARn registers may contain
nonzero values. You MUST zero out the upper bits of the XARn registers
when switching from OBJMODE == 1 to OBJMODE == 0.

� It is recommended that you not switch modes frequently in your code.
Typically, you will select the appropriate operating mode at boot time and
stick to one mode for the whole program.

Migrating to C28x Object Code

F-11Migration From C27x to C28x

F.3 Migrating to C28x Object Code

This section describes additional changes to C27x necessary for migrating
your C27x code to pure C28x code.

F.3.1 Instruction Syntax Changes

Syntax changes were necessary for clarity and because of changes in the aux-
iliary registers stretched pointers. Table F−3 shows the C27x instructions that
changed syntax on the C28x. For all other C27x instructions, the syntax re-
mains the same. For new C28x instructions, the syntax is documented in
Chapter 6.

Migrating to C28x Object Code

Table F−3. Instruction Syntax Change

C27x Syntax C28x Syntax

ADDB ARn,#7bit
ADDB XAR6/7,#7bit

ADDB XARn,#7bit

SUBB ARn,#7bit
SUBB XAR6/7,#7bit

SUBB XARn,#7bit

MOV AR0/../5,loc16 MOVZ AR0/../5,loc16

MOVB AR0/../5,#8bit MOVB XAR0/../5,#8bit

MOV XAR6/7,loc32
MOVL XAR6/7,loc32

MOVL XAR6/7,loc32

MOV XAR6/7,#22bit
MOVL XAR6/7,#22bit

MOVL XAR6/7,#22bit

MOV loc32,XAR6/7
MOVL loc32,XAR6/7

MOVL loc32,XAR6/7

CALL 22bit
LC 22bit

LC 22bit

CALL *XAR7
LC *XAR7

LC *XAR7

RET
LRET

LRET

RETE
LRETE

LRETE

MOV ACC,P {MOVP T,@T decode} MOVL ACC,P << PM {MOVP T,@T decode}

ADD ACC,P {MOVA T,@T decode} ADDL ACC,P << PM {MOVA T,@T decode}

SUB ACC,P {MOVS T,@T decode} SUBL ACC,P << PM {MOVS T,@T decode}

CMP ACC,P CMPL ACC,P << PM

MOV P,ACC MOVL P,ACC

NORM ACC,ARn++
NORM ACC,XAR6/7++

NORM ACC,XARn++

NORM ACC,ARn−−
NORM ACC,XAR6/7−−

NORM ACC,XARn−−

B 16bitOff {unconditional}
SB 8bitOff {unconditional}

B 16bitOff,UNC [2]
SB 8bitOff,UNC [2]

Migrating to C28x Object Code

F-13Migration From C27x to C28x

For conditional branches on the C28x, the UNC code must always be specified
for unconditional tests. This will help to distinguish between unconditional
C2xLP branches (which have the same mnemonic �B�).

F.3.2 Repeatable Instructions

On the C28x, additional instructions have been made repeatable. The follow-
ing two tables list those instructions that are repeatable on the C28x device.
These instructions are repeatable in both C27x compatible mode (OBJMODE
= 0) and C28x native mode (OBJMODE = 1). Any instruction that is not listed,
which follows a repeat instruction, will execute only once.

C27x operations that were already repeatable include the following:

ROR ACC

ROL ACC

NORM ACC,XARn++

NORM ACC,XARn−−

SUBCU ACC,loc16

MAC P,loc16,0:pma

MOV *(0:addr),loc16

MOV loc16,*(0:addr)

MOV loc16,#16bit

MOV loc16,#0

PREAD loc16,*XAR7

PWRITE *XAR7,loc16

NOP loc16

Migrating to C28x Object Code

C27x Operations That Are Made Repeatable On C28x include the following:

MOV loc16,AX

ADD ACC,loc16 << 16

ADDU ACC,loc16

SUB ACC,loc16 << 16

SUBU ACC,loc16

ADDL ACC,loc32

SFR ACC,1..16

LSL ACC,1..16

MOVH loc16,P

MOV loc16,P

MOVA T,loc16

MOVS T,loc16

MPYA P,T,loc16

MPYS P,T,loc16

F.3.3 Changes to the SUBCU Instruction

The SUBCU instruction changed slightly from the C27x to the C28x. Under
the prescribed usage of the SUBCU operation, the change will yield the same
result as the C27x.

The SUBCU instruction operates as follows on the C27x device:
temp(31:0) = ACC − [loc16] << 15

if(temp32 >= 0)

 ACC = temp(31:0) >> 1 + 1;

else

 ACC = ACC << 1;

To simplify the implementation, the SUBCU operation changed as follows on
the C28x:

temp(32:0) = ACC << 1 − [loc16] << 16

if(temp(32:0) >= 0)

ACC = temp(31:0) + 1;

else

ACC = ACC << 1;

� The �temp(32:0)� value is the result of an unsigned 33-bit compare. The
carry bit is used to select between � or < condition.

Migrating to C28x Object Code

F-15Migration From C27x to C28x

� The C flag is affected by the unsigned 33-bit compare operation. The Z,
N flags reflect the value in the ACC after the operation is complete. The
operation of the C, N, Z flags should be identical to the C27x implementa-
tion.

� The V flag and overflow counter (OVC) are not affected by the operation.
On the C27x the V and OVC flags are affected.

The V and OVC flags may be affected on the C27x and not on the C28x imple-
mentation. The values of these flags are not usable under prescribed usage
of such an operation.

Compiling C28x Source Code

F.4 Compiling C28x Source Code

Once you move your code to C28x native instructions, you will no longer use
the −m27 switch to allow for C27x source as shown in Figure F−8.

Figure F−8. Compiling C28x Source

CL2000
−V28

C28x Source
Code

(.asm .c .cpp)

C28x Object
(.out)

−v28: Accepts C28x syntax only. Generates C28x object only (assumes OBJMODE = 1)

G-1

Appendix A

Glossary

16-bit operation: An operation that reads or writes 16 bits.

32-bit operation: An operation that reads or writes 32 bits.

A
absolute branch: A branch to an address that is permanently assigned to

a memory location. See also offset branch.

ACC: See accumulator (ACC).

access: A term used in this document to mean read from or write to. For ex-
ample, to access a register is to read from or write to that register.

accumulator (ACC): A 32-bit register involved in a majority of the arithmetic
and logical calculations done by the C28x. Some instructions that affect
ACC use all 32 bits of the register. Others use one of the following por-
tions of ACC: AH (bits 31 through 16), AL (bits 15 through 0), AH.MSB
(bits 31 through 24), AH.LSB (bits 23 through 16), AL.MSB (bits 15
through 8), and AL.LSB (bits 7 through 0).

address-generation logic: Hardware in the CPU that generates the ad-
dresses used to fetch instructions or data from memory.

address reach: The range of addresses beginning with 00 000016 that can
be used by a particular addressing mode.

address register arithmetic unit (ARAU): Hardware in the CPU that gen-
erates addresses for values that must be fetched from data memory. The
ARAU is also the hardware used to increment or decrement the stack
pointer (SP) and the auxiliary registers (AR0, AR1, AR2, AR3, AR4, AR5,
XAR6, and XAR7).

addressing mode: The method by which an instruction interprets its oper-
ands to acquire the data and/or addresses it needs.

AH: High word of the accumulator. The name given to bits 31 through 16 of
the accumulator.

Appendix G

AH.LSB: Least significant byte of AH. The name given to bits 23 through 16
of the accumulator.

AH.MSB: Most significant byte of AH. The name given to bits 31 through 24
of the accumulator.

AL: Low word of the accumulator. The name given to bits 15 through 0 of the
accumulator.

AL.LSB: Least significant byte of AL. The name given to bits 7 through 0 of
the accumulator.

AL.MSB: Most significant byte of AL. The name given to bits 15 through 8
of the accumulator.

ALU: See arithmetic logic unit (ALU).

analysis logic: A portion of the emulation logic in the core. The analysis log-
ic is responsible for managing the following debug activities: hardware
breakpoints, hardware watchpoints, data logging, and benchmark/event
counting.

approve an interrupt request: Allow an interrupt to be serviced. If the inter-
rupt is maskable, the CPU approves the request only if it is properly en-
abled. If the interrupt is nonmaskable, the CPU approves the request im-
mediately. See also interrupt request and service an interrupt.

ARAU: See address register arithmetic unit (ARAU).

arithmetic logic unit (ALU): A 32-bit hardware unit in the CPU that per-
forms 2s-complement arithmetic and Boolean logic operations. The ALU
accepts inputs from data from registers, from data memory, or from the
program control logic. The ALU sends results to a register or to data
memory.

arithmetic shift: A shift that treats the shifted value as signed. See also log-
ical shift.

ARP: See auxiliary register pointer (ARP).

ARP indirect addressing mode: The indirect addressing mode that uses
the current auxiliary register to point to a location in data space. The cur-
rent auxiliary register is the auxiliary register pointed to by the ARP. See
also auxiliary register pointer (ARP).

automatic context save: A save of system context (modes and key register
values) performed by the CPU just prior to executing an interrupt service
routine. See also context save.

Glossary

G-3Glossary

auxiliary register: One of eight registers used as a pointer to a memory
location. The register is operated on by the auxiliary register arithmetic
unit (ARAU) and is selected by the auxiliary register pointer (ARP). See
also AR0−AR5, AR6/AR7, and XAR6/XAR7.

auxiliary-register indirect addressing mode: The indirect addressing
mode that allows you to use the name of an auxiliary register in an oper-
and that uses that register as a pointer. See also ARP indirect addressing
mode.

auxiliary register pointer (ARP): A 3-bit field in status register ST1 that se-
lects the current auxiliary register. When an instruction uses ARP indirect
addressing mode, that instruction uses the current auxiliary register to
point to data space. When an instruction specifies auxiliary register n by
using auxiliary-register indirect addressing mode, the ARP is updated,
so that it points to auxiliary register n. See also current auxiliary register.

B

background code: The body of code that can be halted during debugging
because it is not time-critical.

barrel shifter: Hardware in the CPU that performs all left and right shifts of
register or data-space values.

bit field: One or more register bits that are differentiated from other bits in
the same register by a specific name and function.

bit manipulation: The testing or modifying of individual bits in a register or
data-space location.

boundary scan: The use of scan registers on the border of a chip or section
of logic to capture the pin states. By scanning these registers, all pin
states can be transmitted through the JTAG port for analysis.

branch: 1) A forcing of program control to a new address. 2) An instruction
that forces program control to a new address but neither saves a return
address (like a call) nor restores a return address (like a return).

break event: A debug event that causes the CPU to enter the debug-halt
state.

breakpoint: A place in a routine specified by a breakpoint instruction or
hardware breakpoint, where the execution of the routine is to be halted
and the debug-halt state entered.

Glossary

C
C bit: See carry (C) bit.

call: 1) The operation of saving a return address and then forcing program
control to a new address. 2) An instruction that performs such an opera-
tion. See also return.

carry (C) bit: A bit in status register ST0 that reflects whether an addition has
generated a carry or a subtraction has generated a borrow.

circular addressing mode: The indirect addressing mode that can be used
to implement a circular buffer.

circular buffer: A block of addresses referenced by a pointer using circular
addressing mode, so that each time the pointer reaches the bottom of the
block, the pointer is modified to point back to the top of the block.

clear : To clear a bit is to write a 0 to it. To clear a register or memory location
is to load all its bits with 0s. See also set.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections, where a
section is a relocatable block of code or data that ultimately occupies a
space adjacent to other blocks of code in the memory map.

conditional branch instruction: A branch instruction that may or may not
cause a branch, depending on a specified or predefined condition (for ex-
ample, the state of a bit).

context restore: A restoring of the previous state of a system (for example,
modes and key register values) prior to returning from a subroutine. See
also context save.

context save: A save of the current state of a system (for example, modes
and key register values) prior to executing the main body of a subroutine
that requires a different context. See also context restore.

core: The portion of the C28x that consists of a CPU, a block of emulation
circuitry, and a set of signals for interfacing with memory and peripheral
devices.

current auxiliary register: The register selected by the auxiliary register
pointer (ARP) in status register. For example, if ARP = 3, the current aux-
iliary register is AR3. See also auxiliary registers.

current data page: The data page selected by the data page pointer. For
example, if DP = 0, the current data page is 0. See also data page.

Glossary

G-5Glossary

D

D1 phase: See decode 1 (D1) phase.

D2 phase: See decode 2 (D2) phase.

data logging: Transferring one or more packets of data from CPU registers
or memory to an external host processor.

data log interrupt (DLOGINT): A maskable interrupt triggered by the on-
chip emulation logic when a data logging transfer has been completed.

data page: A 64-word portion of the total 4M words of data space. Each data
page has a specific start address and end address. See also data page
pointer (DP) and current data page.

data page pointer (DP): A 16-bit pointer that identifies which 64-word data
page is accessed in DP direct addressing mode. For example, for as long
as DP = 500, instructions that use DP direct addressing mode will ac-
cess data page 500.

data-/program-write data bus (DWDB): The bus that carries data during
writes to data space or program space.

data-read address bus (DRAB): The bus that carries addresses for reads
from data space.

data-read data bus (DRDB): The bus that carries data during reads from
data space.

data-write address bus (DWAB): The bus that carries addresses for writes
to data space.

DBGIER: See debug interrupt enable register (DBGIER).

DBGM bit: See debug enable mask (DBGM) bit.

DBGSTAT: See debug status register (DBGSTAT).

debug-and-test direct memory access (DT−DMA): An access of a regis-
ter or memory location to provide visibility to this location during debug-
ging. The access is performed with variable levels of intrusiveness by a
hardware DT-DMA mechanism inside the core.

debug enable mask (DBGM) bit: A bit in status register ST1 used to enable
(DBGM = 0) or disable (DBGM = 1) debug events such as analysis
breakpoints or debug-and-test direct memory accesses (DT-DMAs).

Glossary

debug event: An action such as the decoding of a software breakpoint
instruction, the occurrence of an analysis breakpoint/watchpoint, or a re-
quest from a host processor that may result in special debug behavior,
such as halting the device or pulsing one of the debug interface signals
EMU0 or EMU1. See also break event and debug enable mask (DBGM)
bit.

debug-halt state: A debug execution state that is entered through a break
event. In this state the CPU is halted. See also single-instruction state
and run state.

debug host: See host processor.

debug interrupt enable register (DBGIER): The register that determines
which of the maskable interrupts are time-critical when the CPU is halted
in real-time mode. If a bit in the DBGIER is 1, the corresponding interrupt
is time-critical/enabled; otherwise, it is disabled. Time-critical interrupts
also must be enabled in the interrupt enable register (IER) to be serviced.

debug status register (DBGSTAT): A register that holds special debug sta-
tus information. This register, which need not be read from or written to,
is saved and restored during interrupt servicing, to preserve the debug
context during debugging.

decode an instruction: To identify an instruction and prepare the CPU to
perform the operation the instruction requires.

decode 1 (D1) phase: The third of eight pipeline phases an instruction
passes through. In this phase, the CPU identifies instruction boundaries
in the instruction-fetch queue and determines whether the next instruc-
tion to be executed is an illegal instruction. See also pipeline phases.

decode 2 (D2) phase: The fourth of eight pipeline phases an instruction
passes through. In this phase, the CPU accepts an instruction from the
instruction-fetch queue and completes the decoding of that instruction,
performing such activities as address generation and pointer modifica-
tion. See also pipeline phases.

decrement: To subtract 1 or 2 from a register or memory value. The value
subtracted depends on the circumstance. For example, if you use the op-
erand *−−AR4, the auxiliary register AR4 is decremented by 1 for a 16-bit
operation and by 2 for a 32-bit operation.

device reset: See reset.

Glossary

G-7Glossary

direct addressing modes: The addressing modes that access data space
as if it were 65 536 separate blocks of 64 words each. DP direct address-
ing mode uses the data page pointer (DP) to select a data page from 0
to 65 535. PAGE0 direct addressing mode uses data page 0, regardless
of the value in the DP.

discontinuity: See program-flow discontinuity.

DLOGINT: See data log interrupt (DLOGINT).

DP: See data page pointer (DP).

DP direct addressing mode: A direct addressing mode that uses the data
page pointer (DP) to select a data page from 0 to 65 535. See also
PAGE0 direct addressing mode.

DRAB: See data-read address bus (DRAB).

DRDB: See data-read data bus (DRDB).

DT−DMA: See debug-and-test direct memory access (DT-DMA).

DWAB: See data-write address bus (DWAB).

DWDB: See data-/program-write data bus (DWDB).

E

E phase: See execute (E) phase.

EALLOW bit: See emulation access enable (EALLOW) bit.

EMU0 and EMU1 pins: Pins known as the TI extensions to the JTAG inter-
face. These pins can be used as either inputs or outputs and are avail-
able to help monitor and control an emulation target system that is using
a JTAG interface.

emulation access enable (EALLOW) bit: A bit in status register ST1 that
enables (EALLOW = 1) or disables (EALLOW = 0) access to the emula-
tion registers. The EALLOW instruction sets the EALLOW bit, and the
EDIS instruction clears the EALLOW bit.

emulation logic: The block of hardware in the core that is responsible con-
trolling emulation activities such as data logging and switching among
debug execution states.

emulation registers: Memory-mapped registers that are available for con-
trolling and monitoring emulation activities.

Glossary

enable bit: See interrupt enable bits.

execute an instruction: Take an instruction from the decode 2 phase of the
pipeline through the write phase of the pipeline.

execute (E) phase: The seventh of eight pipeline phases an instruction
passes through. In this phase, the CPU performs all multiplier, shifter,
and arithmetic-logic-unit (ALU) operations. See also pipeline phases.

extended auxiliary registers: See XAR6/XAR7.

F

F1 phase: See fetch 1 (F1) phase.

F2 phase: See fetch 2 (F2) phase.

FC : See fetch counter (FC).

fetch 1 (F1) phase: The first of eight pipeline phases an instruction passes
through. In this phase, the CPU places on the program-read bus the ad-
dress of the instruction(s) to be fetched. See also pipeline phases.

fetch 2 (F2) phase: The second of eight pipeline phases an instruction
passes through. In this phase, the CPU fetches an instruction or instruc-
tions from program memory. See also pipeline phases.

fetch counter (FC) : The register that contains the address of the instruction
that is being fetched from program memory.

field : See bit field.

H

hardware interrupt: An interrupt initiated by a physical signal (for example,
from a pin or from the emulation logic). See also software interrupt.

hardware interrupt priority: A priority ranking used by the CPU to deter-
mine the order in which simultaneously occurring hardware interrupts
are serviced.

hardware reset: See reset.

high addresses: Addresses closer to 3F FFFF16 than to 00 000016. See
also low addresses.

high bits: See MSB.

Glossary

G-9Glossary

high word: The 16 MSBs of a 32-bit value. See also low word.

host processor: The processor running the user interface for a debugger.

I
IC: See instruction counter (IC).

IDLESTAT (IDLE status) bit: A bit in status register ST1 that indicates when
an IDLE instruction has the CPU in the idle state (IDLESTAT = 1).

idle state: The low-power state the CPU enters when it executes the IDLE
instruction.

IEEE 1149.1 standard: �IEEE Standard Test Access Port and Boundary-
Scan Architecture�, first released in 1990. See also JTAG.

IER: See interrupt enable register (IER).

IFR: See interrupt flag register (IFR).

illegal instruction: An unacceptable value read from program memory dur-
ing an instruction fetch. Unacceptable values are 000016, FFFF16, or any
value that does not match a defined opcode.

illegal-instruction trap: A trap that is serviced when an illegal instruction is
decoded.

immediate address: An address that is specified directly in an instruction
as a constant.

immediate addressing modes: Addressing modes that accept a constant
as an operand.

immediate constant/data: A constant specified directly as an operand of
an instruction.

immediate-constant addressing mode: An immediate addressing mode
that accepts a constant as an operand and interprets that constant as
data to be stored or processed.

immediate-pointer addressing mode: An immediate addressing mode
that accepts a constant as an operand and interprets that constant as the
16 LSBs of a 22-bit address. The six MSBs of the address are filled with
0s.

increment: To add 1 or 2 to a register or memory value. The value added
depends on the circumstance. For example, if you use the operand
*AR4++, the auxiliary register AR4 is incremented by 1 for a 16-bit opera-
tion and by 2 for a 32-bit operation.

Glossary

indirect addressing modes: Addressing modes that use pointers to ac-
cess memory. The available pointers are auxiliary registers AR0−AR5,
extended auxiliary registers XAR6 and XAR7, and the stack pointer (SP).

instruction boundary: The point where the CPU has finished one instruc-
tion and is considering what it will do next � move on to the next instruc-
tion.

instruction counter (IC): The register that points to the instruction in the de-
code 1 phase (the instruction that is to enter the decode 2 phase next).
Also, on an interrupt or call operation, the IC value represents the return
address, which is saved to the stack or to auxiliary register XAR7.

instruction-fetch mechanism: The hardware for the fetch 1 and fetch 2
phases of the pipeline. This hardware is responsible for fetching instruc-
tions from program memory and filling an instruction-fetch queue.

instruction-fetch queue: A queue of four 32-bit registers that receives
fetched instructions and holds them for decoding. When a program-flow
discontinuity occurs, the instruction-fetch queue is emptied.

instruction-not-available condition: The condition that occurs when the
decode 2 pipeline hardware requests an instruction but there are no in-
structions waiting in the instruction-fetch queue. This condition causes
the decode 2 through write phases of the pipeline to freeze until one or
more new instructions have been fetched.

instruction register: The register that contains the instruction that has
reached the decode 2 pipeline phase.

instruction word: Either an entire 16-bit opcode or one of the halves of a
32-bit opcode.

INT1−INT14: Fourteen general-purpose interrupts that are triggered by sig-
nals at pins of the same names. These interrupts are maskable and have
corresponding bits in the interrupt flag register (IFR), the interrupt enable
register (IER), and the debug interrupt enable register (DBGIER).

Interrupt boundary: An instruction boundary where the CPU can insert an
interrupt between two instructions. See also instruction boundary.

interrupt enable bits: Bits responsible for enabling or disabling maskable
interrupts. The enable bits are all the bits in the interrupt enable register
(IER), all the bits in the debug interrupt enable register (DBGIER), and
the interrupt global mask bit (INTM in status register ST1).

interrupt enable register (IER): Each of the maskable interrupts has an in-
terrupt enable bit in this register. If a bit in the IER is 1, the corresponding
interrupt is enabled; otherwise, it is disabled. See also debug interrupt
enable register (DBGIER).

Glossary

G-11Glossary

interrupt flag bit: A bit in the interrupt flag register (IFR). If the interrupt flag
bit is 1, the corresponding interrupt has been requested by hardware and
is awaiting approval by the CPU.

interrupt flag register (IFR): The register that contains the interrupt flag bits
for the maskable interrupts. If a bit in the IFR is 1, the corresponding inter-
rupt has been requested by hardware and is awaiting approval by the
CPU.

interrupt global mask (INTM) bit: A bit in status register ST1 that globally
enables or disables the maskable interrupts. If an interrupt is enabled in
the interrupt enable register (IER) but not by the INTM bit, it is not ser-
viced. The only time this bit is ignored is when the CPU is in real-time
mode and is in the debug-halt state; in this situation, the interrupt must
be enabled in the IER and in the DBGIER (debug interrupt enable regis-
ter).

interrupt priority: See hardware interrupt priority.

interrupt request: A signal or instruction that requests the CPU to execute
a particular interrupt service routine. See also approve an interrupt re-
quest and service an interrupt.

interrupt service routine (ISR): A subroutine that is linked to a specific in-
terrupt by way of an interrupt vector.

interrupt vector: The start address of an interrupt service routine. After ap-
proving an interrupt request, the CPU fetches the interrupt vector from
your interrupt vector table and uses the vector to branch to the start of
the corresponding interrupt service routine.

interrupt vector location: The preset location in program memory where
an interrupt vector must reside.

interrupt vector table: The list of interrupt vectors you assign in program
memory.

INTM bit: See interrupt global mask (INTM) bit.

ISR: See interrupt service routine (ISR).

Glossary

J

JTAG: Joint Test Action Group. The Joint Test Action Group was formed in
1985 to develop economical test methodologies for systems designed
around complex integrated circuits and assembled with surface-mount
technologies. The group drafted a standard that was subsequently
adopted by IEEE as IEEE Standard 1149.1-1990, �IEEE Standard Test
Access Port and Boundary-Scan Architecture�. See also boundary scan;
test access port (TAP).

JTAG port: See test access port (TAP).

L

latch: Hold a bit at the same value until a given event occurs. For example,
when an overflow occurs in the accumulator, the V bit is set and latched
at 1 until it is cleared by a conditional branch instruction or by a write to
status register ST0. An interrupt is latched when its flag bit has been
latched in the interrupt flag register (IFR).

least significant bit (LSB): The bit in the lowest position of a binary number.
For example, the LSB of a 16-bit register value is bit 0. See also MSB,
LSByte, and MSByte.

least significant byte (LSByte): The byte in the lowest position of a binary
value. The LSByte of a value consists of the eight LSBs. See also
MSByte, LSB, and MSB.

location: A space where data can reside. A location may be a CPU register
or a space in memory.

logical shift: A shift that treats the shifted value as unsigned. See also arith-
metic shift.

LOOP (loop instruction status) bit: A bit in status register ST1 that indi-
cates when a LOOPNZ or LOOPZ instruction is being executed
(LOOP = 1).

low addresses: Addresses closer to 00 000016 than to 3F FFFF16. See
also high addresses.

low bits: See LSB.

low word: The 16 LSBs of a 32-bit value. See also high word.

Glossary

G-13Glossary

LSB: When used in a syntax of the MOVB instruction, LSB means least sig-
nificant byte. Otherwise, LSB means least significant bit. See least signif-
icant bit (LSB) and least significant byte (LSByte).

LSByte: See least significant byte (LSByte).

M

maskable interrupt: An interrupt that can be disabled by software so that
the CPU does not service it until it is enabled by software. See also non-
maskable interrupt.

memory interface: The buses and signals responsible for carrying commu-
nications between the core and on-chip memory/peripherals.

memory-mapped register: A register that can be accessed at addresses
in data space.

memory wrapper: The hardware around a memory block that identifies ac-
cess requests and controls accesses for that memory block.

mirror: A range of addresses that is the same size and is mapped to the
same physical memory block as another range of addresses.

most significant bit (MSB): The bit in the highest position of a binary num-
ber. For example, the MSB of a 16-bit register value is bit 15. See also
LSB, LSByte, and MSByte.

most significant byte (MSByte): The byte in the highest position of a binary
value. The MSByte of a value consists of the eight MSBs. See also
LSByte, LSB, and MSB.

MSB: When used in a syntax of the MOVB instruction, MSB means most sig-
nificant byte. Otherwise MSB means most significant bit. See most sig-
nificant bit (MSB) and most significant byte (MSByte).

MSByte: See most significant byte (MSByte).

multiplicand register (T): The primary function of this register, also called
the T register, is to hold one of the values to be multiplied during a multi-
plication. The following shift instructions use the four LSBs to hold the
shift count: ASR (arithmetic shift right), LSL (logical shift left), LSR (log-
ical shift right), and SFR (shift accumulator right). The T register can also
be used as a general-purpose 16-bit register.

Glossary

N

N (negative flag) bit: A bit in status register ST0 that indicates whether the
result of a calculation is a negative number (N = 1). N is set to match the
MSB of the result.

nested interrupt: An interrupt that occurs within an interrupt service routine.

NMI: A hardware interrupt that is nonmaskable, like reset (RS), but does not
reset the CPU. NMI simply forces the CPU to execute its interrupt service
routine.

nonmaskable interrupt: An interrupt that cannot be blocked by software
and is approved by the CPU immediately. See also maskable interrupt.

O

offset branch: A branch that uses a specified or generated offset value to
jump to an address relative to the current position of the program counter
(PC). See also absolute branch.

opcode: This document uses opcode to mean the complete code for an in-
struction. Thus, an opcode includes the binary sequence for the instruc-
tion type and the binary sequence and/or constant in which the operands
are encoded.

operand : This document uses operand to mean one of the values entered
after the instruction mnemonic and separated by commas (or for a shift
operand, separated by the symbol <<). For example, in the CLRC INTM
instruction, CLRC is the mnemonic and INTM is the operand.

operation: 1) A defined action; namely, the act of obtaining a result from one
or more operands in accordance with a rule that completely specifies the
result of any permitted combination of operands. 2) The set of such acts
specified by a rule, or the rule itself. 3) The act specified by a single com-
puter instruction. 4) A program step undertaken or executed by a com-
puter; for example, addition, multiplication, extraction, comparison, shift,
transfer, etc. 5) The specific action performed by a logic element.

OVC: See overflow counter (OVC).

OVM: See overflow mode (OVM) bit.

Glossary

G-15Glossary

overflow counter (OVC): A 6-bit counter in status register ST0 that can be
used to track overflows in the accumulator (ACC). The OVC is enabled
only when the overflow mode (OVM) bit in ST0 is 0. When OVM = 0, the
OVC is incremented by 1 for every overflow in the positive direction (too
large a positive number) and decremented by 1 for every overflow in the
negative direction (too large a negative number). The saturate (SAT) in-
struction modifies ACC to reflect the net overflow represented in the
OVC.

overflow flag (V): A bit in status register ST0 that indicates when the result
of an operation causes an overflow in the location holding the result
(V = 1). If no overflow occurs, V is not modified.

overflow mode (OVM) bit: A bit in the status register ST0 that enables or
disables overflow mode. When overflow mode is on (OVM = 1) and an
overflow occurs, the CPU fills the accumulator (ACC) with a saturation
value. When overflow mode is off (OVM = 0), the CPU lets ACC overflow
normally but keeps track of each overflow by incrementing or decrement-
ing by 1 the overflow counter (OVC) in ST0.

P
P register: See product register (P).

PAB: See program address bus (PAB).

PAGE0 bit: PAGE0 addressing mode configuration bit. This bit, in status
register ST1, selects between two addressing modes: PAGE0 stack ad-
dressing mode (PAGE = 0) and PAGE0 direct addressing mode
(PAGE0 = 1).

PAGE0 direct addressing mode: The direct addressing mode that uses
data page 0 regardless of the value in the data page pointer (DP). This
mode is available only when the PAGE0 bit in status register ST1 is 1.
See also DP direct addressing mode and PAGE0 stack addressing
mode.

PAGE0 stack addressing mode: The indirect addressing mode that refer-
ences a value on the stack by subtracting a 6-bit offset from the current
position of the stack pointer (SP). This mode is available only when the
PAGE0 bit in status register ST1 is 0. See also stack-pointer indirect ad-
dressing mode.

PC: See program counter (PC).

pending interrupt: An interrupt that has been requested but is waiting for
approval from the CPU. See also approve an interrupt request.

Glossary

peripheral-interface logic: Hardware that is responsible for handling com-
munications between a processor and a peripheral.

PH: The high word (16 MSBs) of the P register.

phases: See pipeline phases.

pipeline: The hardware in the CPU that takes each instruction through eight
independent phases for fetching, decoding, and executing. During any
given CPU cycle, there can be up to eight instructions in the pipeline,
each at a different phase of completion. The phases, listed in the order
in which instructions pass through them, are fetch 1, fetch 2, decode 1,
decode 2, read 1, read 2, execute, and write.

pipeline conflict: A situation in which two instructions in the pipeline try to
access a register or memory location out of order, causing improper code
operation. The C28x pipeline inserts as many inactive cycles as needed
between conflicting instructions to prevent pipeline conflicts.

pipeline freeze: A halt in pipeline activity in one of the two decoupled por-
tions of the pipeline. Freezes in the fetch 1 through decode 1 portion of
the pipeline are caused by a not-ready signal from program memory.
Freezes in the decode 2 through write portion are caused by lack of in-
structions in the instruction-fetch queue or by not-ready signals from
memory.

pipeline phases: The eight stages an instruction must pass through to be
fetched, decoded, and executed. The phases, listed in the order in which
instructions pass through them, are fetch 1, fetch 2, decode 1, decode 2,
read 1, read 2, execute, and write.

pipeline-protection mechanism: The mechanism responsible for identify-
ing potential pipeline conflicts and preventing them by adding inactive
cycles between the conflicting instructions.

PL: The low word (16 LSBs) of the P register.

PM bits: See product shift mode (PM) bits.

PRDB: See program-read data bus (PRDB).

priority: See interrupt priority.

product register (P): This register, also called the P register, is given the re-
sults of most multiplications done by the CPU. The only other register that
can be given the result of a multiplication is the accumulator (ACC). See
also PH and PL.

Glossary

G-17Glossary

product shift mode (PM) bits: A 3-bit field in status register ST0 that en-
ables you to select one of eight product shift modes. The product shift
mode determines whether or how the P register value is shifted before
being used by an instruction. You have the choices of a left shift by 1 bit,
no shift, or a right shift by N, where N is a number from 1 to 6.

program address bus (PAB): The bus that carries addresses for reads and
writes from program space.

program address generation logic: This logic generates the addresses
used to fetch instructions or data from program memory and places each
address on the program address bus (PAB).

program control logic: This logic stores a queue of instructions that have
been fetched from program memory by way of the program-read bus
(PRDB). It also decodes these instructions and passes commands and
constant data to other parts of the CPU.

program counter (PC): When the pipeline is full, the 22-bit PC always
points to the instruction that is currently being processed�the instruction
that has just reached the decode 2 phase of the pipeline.

program-flow discontinuity: A branching to a nonsequential address
caused by a branch, a call, an interrupt, a return, or the repetition of an
instruction.

program-read data bus (PRDB): The bus that carries instructions or data
during reads from program space.

R

R1 phase: See read 1 (R1) phase.

R2 phase: See read 2 (R2) phase.

read 1 (R1) phase: The fifth of eight pipeline phases an instruction passes
through. In this phase, if data is to be read from memory, the CPU drives
the address(es) on the appropriate address bus(es). See also pipeline
phases.

read 2 (R2) phase: The sixth of eight pipeline phases an instruction passes
through. In this phase, data addressed in the read 1 phase is fetched
from memory. See also pipeline phases.

Glossary

ready signals: When the core requests a read from or write to a memory
device or peripheral device, that device can take more time to finish the
data transfer than the core allots by default. Each device must use one
of the core�s ready signals to insert wait states into the data transfer when
it needs more time. Wait-state requests freeze a portion of the pipeline
if they are received during the fetch 1, read 1, or write pipeline phase of
an instruction.

real-time mode: An emulation mode that enables you execute certain inter-
rupts (time-critical interrupts), even when the CPU is halted. See also
stop mode.

real-time operating system interrupt (RTOSINT): A maskable hardware
interrupt generated by the emulation hardware in response to certain de-
bug events. This interrupt should be disabled in the interrupt enable reg-
ister (IER) and the debug interrupt enable register (DBGIER) unless
there is a real-time operating system present in your debug system.

reduced instruction set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of mi-
croprogrammed complex instruction set computers.

register addressing mode: An addressing mode that enables you to refer-
ence registers by name.

register conflict: A pipeline conflict that would occur if an instruction read
a register value before that value were changed by a prior instruction.
The C28x pipeline inserts as many inactive cycles as needed between
conflicting instructions to prevent register conflicts.

register pair: One of the pairs of CPU register stored to the stack during an
automatic context save.

repeat counter (RPTC): The counter that is loaded by the RPT (repeat) in-
struction. The number in the counter is the number of times the instruc-
tion qualified by RPT is to be repeated after its initial execution.

reserved: A term used to describe memory locations or other items that you
cannot use or modify.

reset: To return the DSP to a known state; an action initiated by the reset
(RS) signal.

return: 1) The operation of forcing program control to a return address. 2)
An instruction that performs such an operation. See also call.

return address: The address at which the CPU resumes processing after
executing a subroutine or interrupt service routine.

Glossary

G-19Glossary

RISC: See reduced instruction set computer (RISC).

rotate operation: An operation performed by the ROL (rotate accumulator
left) or ROR (rotate accumulator right) instruction. The operation, which
involves a shift by 1 bit, can be seen as the rotation of a 33-bit value that
is the concatenation of the carry bit (C) and the accumulator (ACC).

RPTC: See repeat counter (RPTC).

RTOSINT : See real-time operating system interrupt (RTOSINT).

RUN command : A debugger command used to execute all or a portion of
a program. The RUN 1 command causes the debugger to execute a
single instruction.

run state: A debug execution state. In this state, the CPU is executing code
and servicing interrupts freely. See also debug-halt state and single-in-
struction state.

S

select signal: An output signal from the C28x that can be used to select spe-
cific memory or peripheral devices for particular types of read and write
operations.

scan controller: A device that performs JTAG state sequences sent to it by
a host processor. These sequences, in turn, control the operation of a tar-
get device.

service an interrupt : The CPU services an interrupt by preparing for and
then executing the corresponding interrupt service routine. See also in-
terrupt request and approve an interrupt request.

set: To set a bit is to write a 1 to it. If a bit is set, it contains 1. See also clear.

sign extend: To fill the unused most significant bits (MSBs) of a value with
copies of the value�s sign bit.

sign-extension mode (SXM) bit: A bit in status register ST0 that enables
or suppresses sign extension. When sign-extension is enabled
(SXM = 1), operands of certain instructions are treated as signed and
are sign extended during shifting.

single-instruction state: A debug execution state. In this state, the CPU
executes one instruction and then returns to the debug-halt state. See
also debug-halt state and run state.

Glossary

16-bit operation: An operation that reads or writes 16 bits.

software interrupt: An interrupt initiated by an instruction. See also hard-
ware interrupt.

SP: See stack pointer (SP).

SPA bit: See stack pointer alignment (SPA) bit.

ST0: See status registers ST0 and ST1.

ST1: See status registers ST0 and ST1.

stack : The C28x stack is a software stack implemented by the use of a stack
pointer (SP). The SP, a 16-bit CPU register, can be used to reference a
value in the first 64K words of data memory (addresses
00 000016−00 FFFF16).

stack pointer (SP): A 16-bit CPU register that enables you to use any por-
tion of the first 64K words of data memory as a software stack. The SP
always points to the next empty location in the stack.

stack pointer alignment (SPA) bit: A bit in status register ST1 that indi-
cates whether an ASP instruction has forced the SP to align to the next
even address (SPA = 1).

stack-pointer indirect addressing mode: The indirect addressing mode
that references a data-memory value at the current position of the stack
pointer (SP). See also PAGE0 stack addressing mode.

status registers ST0 and ST1: These CPU registers contain control bits
that affect the operation of the C28x and contain flag bits that reflect the
results of operations.

STEP command: A debugger command that causes the debugger to
single-step through a program. The STEP1 command causes the de-
bugger to execute a single instruction.

stop mode: An emulation mode that provides complete control of program
execution. When the CPU is halted in stop mode, all interrupts (including
reset and nonmaskable interrupts) are ignored until the CPU receives a
directive to run code again. See also real-time mode.

suppress sign extension: Prevent sign extension from occurring during a
shift operation. See also sign extend.

SXM bit: See sign-extension mode (SXM) bit.

Glossary

G-21Glossary

T

T register: The primary function of this register, also called the multiplicand
register, is to hold one of the values to be multiplied during a multiplica-
tion. The following shift instructions use the four LSBs to hold the shift
count: ASR (arithmetic shift right), LSL (logical shift left), LSR (logical
shift right), and SFR (shift accumulator right). The T register can also be
used as a general-purpose 16-bit register.

TAP: See test access port (TAP).

target device/system: The device/system on which the code you have de-
veloped is executed.

TC bit: See test/control flag (TC).

test access port (TAP): A standard communication port defined by IEEE
standard 1149.1−1990 included in the DSP to implement boundary scan
functions and/or to provide communication between the DSP and emula-
tor.

test/control flag (TC): A bit in status register ST0 that shows the result of
a test performed by the TBIT (test bit) instruction or the NORM (normal-
ize) instruction.

test-logic-reset: A test and emulation logic condition that occurs when the
TRST signal is pulled low or when the TMS signal is used to advance the
JTAG state machine to the TLR state. This logic is a different type than
that used by the CPU, which resets functional logic.

32-bit operation: An operation that reads or writes 32 bits.

TI extension pins: See EMU0 and EMU1 pins.

time-critical interrupt: An interrupt that must be serviced even when back-
ground code is halted. For example, a time-critical interrupt might service
a motor controller or a high-speed timer. See also debug interrupt enable
register (DBGIER).

U

USER1−USER12 interrupts: The interrupt vector table contains twelve
locations for user-defined software interrupts. These interrupts, called
USER1−USER12 in this document, can be initiated only by way of the
TRAP instruction.

Glossary

V

V bit (overflow flag): A bit in status register ST0 that indicates when the re-
sult of an operation causes an overflow in the location holding the result
(V = 1). If no overflow occurs, V is not modified.

vector: See interrupt vector.

vector location: See interrupt vector location.

vector map (VMAP) bit: A bit in status register ST1 that determines the ad-
dresses to which the interrupt vectors are mapped. When VMAP = 0, the
interrupt vectors are mapped to addresses 00 000016−00 003F16 in pro-
gram memory. When VMAP = 1, the vectors are mapped to addresses
3F FFC016−3F FFFF16 in program memory.

vector table: See interrupt vector table.

W

W phase: See write (W) phase.

wait state: A cycle during which the CPU waits for a memory or peripheral
device to be ready for a read or write operation.

watchpoint: A place in a routine where it is to be halted if an address or an
address and data combination match specified compare values. When
a watchpoint is reached, the routine is halted and the CPU enters the de-
bug-halt state.

word: In this document, a word is 16 bits unless specifically stated to be
otherwise.

write (W) phase: The last of eight pipeline phases an instruction passes
through. In this phase, if a value or result is to be written to memory, the
CPU sends to memory the destination address and the data to be written.
See also pipeline phases.

Z

zero fill: Fill the unused low- and/or high-order bits of a value with 0s.

zero flag (Z): A bit in status register ST0 that indicates when the result of an
operation is 0 (Z = 1).

Glossary

Index

Index-1

Index

A
ABORTI 6-18

ABORTI instruction 7-15

ABS ACC 6-19

ABSTC ACC 6-20

access to CPU registers during emulation 7-16

access to memory during emulation 7-16

accesses
polite 7-16
rude 7-16

Accumulator C-4

accumulator 2-6
AH (high word) 2-6
AH.LSB 2-7
AH.MSB 2-7
AL (low word) 2-6
AL.LSB 2-7
AL.MSB 2-7
portions that are individually accessible 2-7

ADD ACC,#16bit<#0..15 6-22

ADD ACC,loc16< T 6-24

ADD ACC,loc16<#0 6-25

ADD AX, loc16 6-27

ADD loc16, AX 6-28

ADD loc16,#16bitSigned 6-29

ADDB ACC,#8bit 6-30

ADDB AX, #8bitSigned 6-31

ADDB SP, #7bit 6-32

ADDB XARn, #7bit 6-33

ADDCL ACC,loc32 6-34

ADDCU ACC,loc16 6-35

ADDL ACC,loc32 6-36

ADDL ACC,P < PM 6-37

ADDL loc32, ACC 6-38

address buses 1-9
address counters FC, IC, and PC 4-5
address maps 1-8
address reach C-5
address register arithmetic unit (ARAU) 1-5, 2-2
addressing modes 5-1, 5-2

byte 5-31
direct 2-10
direct addressing 5-2
indirect 2-12
indirect addressing 5-2
program space 5-30
register 5-25
stack addressing 5-2

Addressing Modes for �loc16� or �loc32�, table 5-4
Addressing Modes Select Bit (AMODE) 5-4
ADDRH register 7-24
ADDRL register 7-24
ADDU ACC,loc16 6-39
ADDUL P,loc32 6-40
ADDUL ACC, loc32 6-41
ADRK #8bit 6-42
AH (high word of accumulator) 2-6
AL (low word of accumulator) 2-6
align stack pointer 6-52
AL.LSB (part of accumulator) 2-7
AL.MSB (part of accumulator) 2-7
AMODE 5-4, C-9, F-4
AMODE bit 1-2
analysis resources

breakpoints 7-19
clearing resources 7-30
counters 7-20
data logging 7-23
sharing resources 7-30
watchpoints 7-19

AND ACC, #16bit < #0..15 6-43

Index

Index-2

AND ACC, loc16 6-43, 6-44
AND AX, loc16, #16bit 6-45
AND IER,#16bit 6-46
AND IFR,#16bit 6-47
AND loc16, AX 6-48
AND AX, loc16 6-49
AND IER and OR IER instructions, note

about RTOSINT 3-9
AND loc16,#16bitSigned 6-50
ANDB AX, #8bit 6-51
architectural overview 1-1
architecture differences between the

C27x and the C28x F-1
architecture differences between the

C2xLP and the C28x C-1
arithmetic logic unit (ALU) 1-5
arithmetic shift right 6-53
ARP C-9
ARx registers D-14
ASP 6-52
ASR AX,#1016 6-53
ASR AX,T 6-54
ASR64 ACC:P,#1..16 6-55
ASR64 ACC:P,T 6-56
ASRL ACC,T 6-57
atomic arithmetic logic unit (ALU) 2-2
Auxiliary registers C-4
auxiliary registers

AR0−AR5, XAR6, XAR7 2-12
pointer 2-34

B
B 16bitOffset,COND 6-58
B0 Memory Map C-14
background code 7-6
BANZ E-4
BANZ 16bitOffset,ARn−− 6-59
BAR 16bitOffset,ARn,ARm,EQ 6-60
barrel shifter 1-5
benchmark counter 7-20
BF 16bitOffset,COND 6-61
bits

auxiliary register pointer (ARP) 2-34
carry (C) 2-25

debug enable mask (DBGM) 2-37
debug interrupt enable register (DBGIER) 3-10
emulation access enable (EALLOW) 2-35
IDLE status (IDLESTAT) 2-35
interrupt enable register (IER) 3-9
interrupt flag register (IFR) 3-7
interrupt global mask (INTM) 2-37
loop instruction status (LOOP) 2-35
negative flag (N) 2-24
overflow counter (OVC) 2-16
overflow flag (V) 2-21
overflow mode (OVM) 2-32
PAGE0 addressing mode configuration 2-36
product shift mode (PM) 2-19
sign-extension mode 2-32
stack pointer alignment (SPA) 2-36
test/control flag (TC) 2-30
vector map (VMAP) 2-36
zero flag (Z) 2-25

block diagram of the CPU, figure 2-3
branch 6-58

instructions introduced 2-39
break event 7-6
break events 7-7
breakpoints 7-19

caution about time-critical ISRs 7-11
Building a C27x Object File From C27x Source,

figure F-8
buses

data-/program-write data 1-9
data-read address 1-9
data-read data 1-9
data-write address 1-9
program address 1-9
program-read data 1-9
special operations 1-10
summary table 1-10

C
C bit 2-25
C27MAP 6-62
C27OBJ 6-63
C27x Compatible Mapping of ABlocks M0 and M1,

figure F-7
C27x object mode F-8
C28ADDR 6-64
C28MAP 6-65
C28OBJ 6-66

Index

Index-3

C28x and C2xLP Flags, table E-2
C28x features C-2
C28x Product Mode Shifter, table C-8
C28x Status Register ST0 C-7
C28x Status Register ST1 C-7
C2xLP D-1
C2xLP and C28x architectural differences C-1
C2xLP and C28x Differences in Instructions and

Registers, table D-13
C2xLP and C28x Differences in Interrupts,

table D-10
C2xLp and C28x Differences in Memory Maps,

table D-12
C2xLP and C28x Differences in Status Registers,

table D-11
C2xLP Instructions and C28x Equivalent Instruc-

tions, table E-3
C2xLP Product Mode Shifter C-8
C2xLP Status Register ST0 C-7
C2xLP Status Register ST1 C-7
calls 2-39
Carry bit (C) C-10
carry bit (C) 2-25
caution, breakpoints within time-critical interrupt ser-

vice routines 7-11
central processing unit (CPU) 1-4, 2-2

reset 3-23
in real-time mode debug-halt state 7-9

checksum computation B-6
circular addressing modes 5-21
clear the AMODE bit 6-67
clear the OBJMODE bit 6-63
CLRC AMODE 6-67
CLRC M0M1MAP 6-68
CLRC OBJMODE 6-69
CLRC OVC 6-70
CLRC XF 6-71
CLRC mode 6-72
CMP AX, loc16 6-74
CMP loc16,#16bitSigned 6-75
CMP64 ACC:P 6-77
CMPB AX, #8bit 6-79
CMPL ACC,loc32 6-80
CMPL ACC,P < PM 6-81
CMPR 0 6-82

code
clear IFR D-8
conversion from C2xLP D-8
IER/IFR D-7
interrupt D-8
migration reference tables D-10

code examples D-7
Code for a Full Context Save/Restore for C28x vs

C27x, figure F-6
code submission B-4
compare 6-74
compatibility 1-2
compiler 5-7
computation of checksum B-6
core 1-2

components 1-4
diagram 1-4

count sign bits 6-83
counters 7-20
CPU 1-4, 2-2

See also central processing unit
reset 3-23

in real-time mode debug-halt state 7-9
CPU registers 2-4
CSB ACC 6-83
CSM passwords B-5
custom ROM codes B-1

D
data buses 1-9
data log interrupt (DLOGINT) 3-6, 7-27

vector 3-5
data logging 1-5, 7-23

accessing emulation registers 7-26
creating a transfer buffer 7-23
examples 7-28
interrupt (DLOGINT) 3-6, 7-27
interrupt vector 3-5
with end address 7-29
with word counter 7-28

data logging end-address control register 7-26
data memory C-14
data move contents 6-89
data page pointer C-5
data page pointer (DP) 2-10
data space, address map 1-8

Index

Index-4

data-/program-write data bus (DWDB) 1-9

data-read address bus (DRAB) 1-9

data-read data bus (DRDB) 1-9

data-write address bus (DWAB) 1-9

DBGIER A-2

DBGM F-4
debug enable mask bit C-9

DBGSTAT register 7-15

debug
enable mask bit (DBGM) 2-37
event 7-6
execution control modes 7-7
halt state 7-6
interface 7-3
sharing resources 7-30
terminology 7-6

debug enable mask bit (DBGM) 2-37
role in accesses during emulation 7-16
set during interrupt handling 3-15, 3-20

debug interrupt enable register A-2

debug interrupt enable register (DBGIER) 3-6, 3-8,
3-10, 7-9
quick reference figure A-9

Debug interrupt−enable register C-4

debug status register (DBGSTAT) 7-15

debug−and−test direct memory access 1-5

debug-and-test direct memory access (DT-DMA)
mechanism 7-16

debug-halt state 7-7, 7-9

DEC loc16 6-84

decoupled pipeline segments 4-4

decrement by 1 6-84

development interface 7-2

diagnostic features for emulation 7-31

diagrams
CPU 2-3
memory map 1-7
multiplication 2-42, 2-43
pipeline activity 4-8
pipeline conflict 4-13, 4-14
relationship between pipeline and address count-

ers 4-6
shift operations 2-45
T320C28x DSP core 1-4

DINT 6-85

Direct Addressing Mode 5-2, 5-8

direct addressing mode C-5
Direct Addressing Mode Mapping, figure C-6
direct addressing mode on the C2xLP C-5
direct memory access mechanism

for emulation 7-16
disable write access to protected registers 6-91
discontinuity delay 4-11
DMA control register 7-25
DMA ID register 7-25
DMA registers (data logging) 7-25
DMAC ACC:P,loc32,*XAR7 6-86
DMOV loc16 6-89
DP 2-10
DT−DMA 1-5
DT-DMA mechanism 7-16
DT-DMA request process, figure 7-17
dual multiply and accumulate 6-86

E
EALLOW 6-90, C-9
EALLOW bit 2-35
EALLOW instruction, use in

data logging 7-23, 7-26
EDIS 6-91
EDIS instruction, use in data logging 7-24, 7-27
EINT 6-92
EMU0/1, signals 7-4
EMU0/1 signals 7-4
emulation

data logging 7-23
disabled 7-5
enabled 7-5
features 1-5, 7-2
logic 1-4, 1-5, 7-15

Emulation access enable bit C-9
emulation access enable bit (EALLOW) 2-35
emulation signals 1-6
enable maskable interrupts 6-92
enable write access to protected space 6-90
end address register (data logging) 7-26
ESTOP0 6-93
ESTOP1 6-94
event counter 7-20
events

break 7-6

Index

Index-5

debug 7-6

examples
code D-7
data logging with end address 7-29
data logging with word counter 7-28

execution control modes
real-time mode 7-9
stop mode 7-7

F
fast function call 6-95

FC (fetch counter) 4-5

fetch counter (FC) 4-5

FFC XAR7,22bit 6-95

find the maximum 6-149

find the minimum 6-153

flags, interrupt flag register (IFR) 3-7

FLIP AX 6-96

flip order of bits in AX register 6-96

flow chart of recommended migration
steps, figure D-4

flow charts
handling DT-DMA request 7-17
interrupt initiated by the TRAP

instruction 3-18
interrupt operation, maskable

interrupts 3-12

foreground code 7-6

full context save D-8

Full Context Save/Restore, figure F-5

Full Context Save/Restore Comparison, table D-9

G
global space C-14

GREG register D-14

H
hardware reset 3-23

hardware reset interrupt 3-17

header, dimensions, 14-pin 7-3

high-impedance mode 7-5

I
I/O space C-14
IACK #16bit 6-97
IC (instruction counter) 4-5
IDLE 6-98
IDLE status bit (IDLESTAT) 2-35
IDLESTAT C-9
IDLESTAT bit 2-35
IEEE 1149.1 (JTAG) signals 7-3
IER A-2
IFR A-2
illegal-instruction trap 3-17, 3-22
IMACL P,loc32,*XAR7 6-100
improvements over the C2xLP CPU C-2
IMPYAL P,XT,loc32 6-103
IMPYL ACC,XT,loc32 6-105
IMPYL P,XT,loc32 6-106
IMPYSL P,XT,loc32 6-107
IMPYXUL P,XT,loc32 6-109
IN loc16,*(PA) 6-111
INC loc16 6-113
increment by 1 6-113
Indirect Addressing Mode 5-2, 5-10
individually accessible portions of the accumula-

tor 2-7
instrucitons, MAX AX,loc16 (find the maxi-

mum) 6-149
instruction

TBIT 6-359
XB 6-370

instruction counter (IC) 4-5
Instruction Syntax Change, table F-12
instruction-fetch mechanism 4-4
instruction-not-available condition 4-10
instructions

ABORTI (abort interrupt) 7-15
ABS ACC (Absolute Value of

Accumulator) 6-19
ADD (add constant) 6-29
ADD AX (Add value to AX) 6-27
ADDACC (Add value to accumulator) 6-22
ADDB XARn, #7bit 6-33
ADDUACC (add unsigned value to

accumulator) 6-39
ADRK (add to current register) 6-42

Index

Index-6

ASP (align stack pointer) 6-52
ASRAX (arithmetic shift right) 6-53
B (branch) 6-58
C27MAP (set the M0M1MAP bit) 6-62
C27OBJ (clear the OBJMODE bit) 6-63
CLRCAMODE (clear the AMODE bit) 6-67
CMP AX (compare) 6-74
conditional 2-39
CSBACC (count sign bits) 6-83
DEC (decrement) 6-84
DMA ACC (dual multiply and

accumulate) 6-86
DMOV (data move contents) 6-89
EALLOW (enable write access to

protected space 6-90
EDIS (disable write access to

protected registers) 6-91
EINT (enable maskable interrupts) 6-92
FFC XAR7,22bit (fast function call) 6-95
FLIP AX (flip order of bits in

AX register) 6-96
IACK,#16bit (interrupt acknowledge 6-97
INCloc16 (increment by 1) 6-113
INTR (software interrupt) 3-17
LB *XAR7 (long indirect branch) 6-119
LC *XAR7 (long indirect call) 6-121
LCR #22bit (long call using RPC) 6-123
LOOPNZ loc16,#16bit (loop while not

zero) 6-125
LPADDR (set the AMODE bit) 6-129
LRET (long return) 6-130
LSLACC,#1..16 (logical shift left) 6-133
LSR AX,#1..16 (logical shift right) 6-140
MAC (multiply and accumulate, preload T) 4-16
MIN AX,loc16 (find the minimum) 6-153
MOV AR6/7,loc16 (load

auxiliary register) 6-160
MOV AX,loc16 (load AX) 6-161
MOV DP,#10bit (load data page

pointer) 6-162
MOV IER,loc16 (load the interrupt enable regis-

ter) 6-163
MOV loc16, #16bit (save 16-bit constant) 6-164
MOV loc16, OVC (store the overflow

counter) 6-173
MOV OVC,loc16 (load the overflow

counter) 6-176
MOV*(0:16bit),loc16 (move value) 6-156
OR ACC,loc16 (bitwise OR) 6-257
OUT *(PA),loc16 (output data to port) 6-265

POP ACC (pop top of stack to accumula-
tor) 6-267

PREAD (read from program memory) 4-16
PREAD loc16,*XAR7 (read from

program memory) 6-282
PUSH ACC (push accumulator onto

stack) 6-284
PWRITE (write to program memory) 4-16
ROL ACC (rotate accumulator left) 6-310
ROR ACC (rotate accumulator right) 6-311
SAT ACC (saturate accumulator) 6-313
SUBR loc16,AX 6-354
TRAP (software trap) 3-17

instructions , PWRITE *XAR7,loc16 (write to pro-
gram memory) 6-299

interface, memory 1-9

interrupt, signals 1-6

interrupt acknowledge 6-97

interrupt-control registers (IFR, IER, DBGI-
ER) 2-14

interrupt enable D-10

Interrupt enable register C-4

interrupt enable register D-10

interrupt enable register (IER) 3-6, 3-8, 7-9
quick reference figure A-8

Interrupt flag register C-4

interrupt flag register A-2, D-10

interrupt flag register (IFR) 3-7
quick reference figure A-7

Interrupt global mask bit (INTM) C-10

interrupt global mask bit (INTM) 2-37, 3-6, 7-9

interrupt handling in real-time mode 7-9

interrupt handling in stop mode 7-7

interrupt instructions
AND IER 3-8
AND IFR 3-7
INTR 3-8, 3-17
OR IER 3-8
OR IFR 3-7
POP DBGIER 3-10
PUSH DBGIER 3-10
TRAP 3-17

interrupt service routine (ISR) 3-4
caution about breakpoints 7-11

interrupt vectors 1-7

interrupts 2-39, 3-1
aborting 7-15

Index

Index-7

control registers (IFR, IER, DBGIER) 2-14
data log interrupt (DLOGINT) 3-6, 7-27
effect on instructions in pipeline 4-4
general purpose 3-6
handling information by emulation

mode and state 7-13
INT1−INT14 3-6
maskable 3-6

definition 3-2
flow chart of operation 3-12

NMI 3-21
nonmaskable 3-17

definition 3-2
operation

overview 3-2
real-time mode 7-9
standard 3-11
stop mode 7-7

overview 3-2
real-time operating system interrupt (RTO-

SINT) 3-6
special cases, clearing IFR flag bit after TRAP

instruction 3-7, 3-8
time-critical 7-6

serviced in real-time mode 7-9
vectors 3-4

INTM C-11

INTR INTx 6-114

INTR instruction 3-17, D-10

IRET 6-116

IRET instruction 7-15, F-5

J
JTAG, signals 7-3

JTAG header to interface a target to the scan con-
troller, figure 7-3

JTAG port 7-1

L
LACL dma D-15

LB *XAR7 6-119

LB 22bit 6-120

LC *XAR7 6-121

LC 22bit 6-122

LCR #22bit 6-123

LCR *XARn 6-124
load auxiliary register 6-160
load AX 6-161
load data page pointer 6-162
load the interrupt enable register 6-163
load the overflow counter 6-176
loc16 5-2
loc32 5-2
logical shift left 6-133
logical shift right 6-140
long call using RPC 6-123
long indirect branch 6-119
long indirect call 6-121
long return 6-130
LOOP C-9
LOOP bit 2-35
Loop instruction status bit C-9
loop instruction status bit (LOOP) 2-35
loop while not zero 6-125
LOOPNZ loc16,#16bit 6-125
LOOPZ loc16,#16bit 6-127
LPADDR 6-129
LRET 6-130
LRETE 6-131
LRETER 6-132
LSL ACC,#1..16 6-133
LSL ACC,T 6-134
LSL AX,#1016 6-135
LSL AX,T 6-136
LSL64 ACC:P,#1..16 6-137
LSL64 ACC:P,T 6-138
LSLL ACC,T 6-139
LSR AX,#1016 6-140
LSR AX,T 6-141
LSR64 ACC:P,#1..16 6-142
LSR64 ACC:P,T 6-143
LSRL ACC,T 6-144

M
M0 M1 map bit C-9
M0M1MAP C-9, F-4
MAC P,loc16,0:pma 6-145
MAC P, loc16, *XAR7 6-147

Index

Index-8

Mapping of memory blocks B0 and B1 on C27 F-7
maskable interrupts 3-6

definition 3-2
flow chart of operation 3-12

MAX AX, loc16 6-149
MAXCUL P,loc32 6-150
MAXL ACC,loc32 6-152
memory 1-9

address map 1-8
interface 1-9
map 1-7
reserved addresses 1-8

Memory Map C-13
memory map C-12, F-2
memory map diagram 1-7
Memory space C-12
memory wrappers 1-11
migration 1-2
migration flow D-3
migration guidelines D-1
MIN AX, loc16 6-153
MINCUL P,loc32 6-154
MINL ACC,loc32 6-155
mixing of C2xLP code and C28x code seg-

ments D-6
modes

high-impedance 7-5
nonpreemptive 7-16
normal with emulation disabled 7-5
normal with emulation enabled 7-5
preemptive 7-16
real-time 7-7, 7-9
slave 7-5
stop 7-7

MOV *(0:16bit),loc16 6-156
MOV AX, loc16 6-161
MOV ACC,#16bit<#0..15 6-157
MOV ACC,loc16 < T 6-158
MOV ACC,loc16<#0..16 6-159
MOV AR6, loc16 6-160
MOV DP, #10bit 6-162
MOV IER,loc16 6-163
MOV loc16, #0 6-166
MOV loc16, #16bit 6-164
MOV loc16, *(0:16bit) 6-165
MOV loc16, AX 6-169

MOV loc16, AX, COND 6-170
MOV loc16,IER 6-172
MOV loc16,OVC 6-173
MOV loc16,P 6-174
MOV OVC, loc16 6-176
MOV PH, loc16 6-177
MOV PL, loc16 6-178
MOV PM, AX 6-179
MOV T, loc16 6-180
MOV TL, #0 6-181
MOV loc16,ARn 6-168
MOV XARn, PC 6-182
MOV, loc16,T 6-175
MOVA, T,loc16 6-183
MOVAD T, loc16 6-185
MOVB ACC,#8bit 6-187
MOVB AR6/7, #8bit 6-188
MOVB AX.LSB, loc16 6-190
MOVB AX.MSB, loc16 6-192
MOVB AX, #8bit 6-189
MOVB loc16, AX.LSB 6-196
MOVB loc16, AX.MSB 6-198
MOVB loc16,#8bit,COND 6-194
MOVB XARn, #8bit 6-200
MOVDL XT,loc16 6-201
move value 6-156
MOVH loc16, P 6-203
MOVH loc16,ACC, < #1..8 6-167, 6-202
MOVL ACC,loc32 6-204
MOVL ACC,P < PM 6-205
MOVL loc32, ACC 6-206
MOVL loc32, XAR0 6-210
MOVL loc32,ACC,COND 6-207
MOVL loc32,P 6-209
MOVL loc32,XT 6-211
MOVL P,ACC 6-212
MOVL P,loc32 6-213
MOVL XAR0, loc32 6-214
MOVL XARn, #22bit 6-215
MOVL XT, loc32 6-216
MOVP T,loc16 6-217
MOVS, T,loc16 6-218
MOVU ACC,loc16 6-220
MOVU loc16,OVC 6-221

Index

Index-9

MOVU OVC,loc16 6-222
MOVW DP, #16bit 6-223
MOVX TL,loc16 6-224
MOVZ AR005, loc16 6-225
MOVZ DP, #10bit 6-226
MPY ACC, loc16,#16bit 6-227
MPY ACC,T,loc16 6-228
MPY P,loc16,#16bit 6-229
MPY P,T,loc16 6-230
MPYA P,loc16,#16bit 6-231
MPYA P,T,loc16 6-233
MPYB ACC,T,#8bit 6-235
MPYB P,T,#8bit 6-236
MPYS P,T,loc16 6-237
MPYU ACC,T,loc16 6-240
MPYU P,T,loc16 6-239
MPYXU ACC, T, loc16 6-241
MPYXU P,T,loc16 6-242
Multiplicand register C-4
multiplicand register (T) 2-8
multiplier, operation 2-41

N
N bit 2-24
NASP 6-243
NEG ACC 6-244
NEG AX 6-245
NEG64 ACC:P 6-246
Negative flag C-8
negative flag (N) 2-24
NEGTC ACC 6-248
NMI Instruction D-10
NMI interrupt 3-21
NMI pin 3-21
nonmaskable interrupts 3-17

definition 3-2
nonpreemptive mode 7-16
NOP {*ind}{,ARPn} 6-250
NORM ACC, *ind 6-251
NORM ACC,XARn++ 6-253
normal mode 7-5
NOT ACC 6-255
NOT AX 6-256

O
OBJMODE C-9, F-4, F-9
OBJMODE bit 1-2
operating modes, selecting by using TRST, EMU0,

and EMU1 7-5
operations

multiply 2-41
shift 2-44
special bus 1-10
stack 2-12

OR ACC, loc16 6-257
OR ACC,#16bit < #0..15 6-258
OR AX, loc16 6-259
OR loc16, AX 6-263
OR IER,#16bit 6-260
OR IFR,#16bit 6-261
OR loc16,#16bit 6-262
ORB AX, #8bit 6-264
OUT *(PA),loc16 6-265
output data to port 6-265
OVC, overflow counter C-9
OVC (overflow counter) 2-16
overflow counter (OVC) 2-16
Overflow flag C-8
overflow flag (V) 2-21
Overflow mode (OVM) C-10
overflow mode bit (OVM) 2-32
OVM C-11
OVM bit 2-32

P
P register 2-9
PAGE0 addressing mode configuration bit C-9
PAGE0 bit 2-36
PC (program counter) 2-14, 4-5
phases of pipeline 4-2
pipeline 2-40

decoupled segments 4-4
freezes in activity 4-10
instruction-fetch mechanism 4-4
operations not protected by 4-16
phases 4-2
protection 4-12
visualizing activity 4-7

Index

Index-10

wait states 4-10
pipeline phases 4-2
PM bits 2-19
POP ACC 6-267
POP AR1:AR0 6-268
POP AR1H:AR0H 6-269
POP AR3:AR2 6-268
POP AR5:AR4 6-268
POP DBGIER 6-270
POP DP 6-271
POP DP:ST1 6-272
POP IFR 6-273
POP loc16 6-274
POP P 6-275
POP RPC 6-276
POP ST0 6-277
POP ST1 6-278
POP T:ST0 6-279
pop top of stack to accumulator 6-267
POP XAR0 6-280
POP XAR1 6-280
POP XAR2 6-280
POP XAR3 6-280
POP XAR4 6-280
POP XAR5 6-280
POP XAR6 6-280
POP XAR7 6-280
POP XT 6-281
PREAD loc16,*XAR7 6-282
preemptive mode 7-16
process for handling a DT-DMA request, fig-

ure 7-17
Product Mode Shifter C-8
Product register C-4
product register (P) 2-9
Product shift mode C-8
product shift mode bits (PM) 2-19
program address bus (PAB) 1-9, 4-4
Program counter C-4
program counter D-14
program counter (PC) 2-14, 4-5
program flow 2-39
Program space C-12
program space, address map 1-8

program−space read and write 1-10
program-address counters 4-5
program-read data bus (PRDB) 1-9
PUSH ACC 6-284
push accumulator onto stack 6-284
PUSH AR1:AR0 6-285
PUSH AR1H:AR0H 6-286
PUSH AR3:AR2 6-285
PUSH AR5:AR4 6-285
PUSH DBGIER 6-287
PUSH DP 6-288
PUSH DP:ST1 6-289
PUSH IFR 6-290
PUSH loc16 6-291
PUSH P 6-292
PUSH RPC 6-293
PUSH ST0 6-294
PUSH ST1 6-295
PUSH T:ST0 6-296
PUSH XAR0 6-297
PUSH XAR1 6-297
PUSH XAR2 6-297
PUSH XAR3 6-297
PUSH XAR4 6-297
PUSH XAR5 6-297
PUSH XAR6 6-297
PUSH XAR7 6-297
PUSH XT 6-298
PWRITE *XAR7, loc16 6-299

Q
QMACL P,loc32,*XAR7 6-300
QMACL P,loc32,*XAR7++ 6-300
QMPYAL P,XT,loc32 6-302
QMPYL P,XT,loc32 6-304
QMPYL ACC,XT,loc32 6-305
QMPYSL P,XT,loc32 6-306
QMPYUL P,XT,loc32 6-308
QMPYXUL P,XT,loc32 6-309

R
read from program memory 6-282
reads and writes, unprotected 4-16

Index

Index-11

real-time mode 7-7, 7-9
figure of execution states 7-10

real-time mode versus stop mode, figure 7-12
real-time operating system interrupt

(RTOSINT) 3-6, 7-14
Register Addressing Mode 5-2
register addressing modes 5-25
register changes C-4
register modifications C-3, F-2
register quick reference A-1

figures A-3
registers

accumulator 2-6
ADDRH 7-24
ADDRL 7-24
after reset 3-23
auxiliary registers (XAR0 − XAR7) 2-12
conflicts, protection against 4-13
CPU registers (summary) 2-4
data page pointer (DP) 2-10
debug interrupt enable register

(DBGIER) 3-8
DMA control register 7-25
end address register (data logging) 7-26
interrupt-control registers (IFR, IER,

DBGIER) 2-14
interrupt enable register (IER) 3-8
interrupt flag register (IFR) 3-7
multiplicand (T) 2-8
product register (P) 2-9
program counter (PC) 2-14
quick reference A-1
quick reference figures A-3
return program counter (RPC) 2-14
stack pointer (SP) 2-11
start address register (data logging) 7-25
status register ST0 2-14, 2-16
status register ST1 2-14, 2-34
T register 2-8

registers after reset 3-23
repeat counter (RPTC) 2-39
repeat instructions D-13
repeatable instructions E-9, F-13
reserved addresses 1-8
Reserved memory C-14
reset 1-3
reset and interrupt signals 1-6
reset conditions C-10

Reset Conditions of Internal
Registers, table C-10

reset input signal (RS) 3-23
reset of CPU 3-23
Reset Values of the Status and

Control Registers, table A-2
Return Program Counter 2-5
Return program counter C-4
return program counter (RPC) 2-14
returns 2-39
ROL ACC 6-310
ROM code generation flow B-6
ROM codes, submitting custom B-1
ROM layout B-5
ROR ACC 6-311
rotate accumulator left 6-310
RPC (return program counter) 2-14
RPT #8bit 6-312
RPT loc16 6-312
RPTC (repeat counter) 2-39
run state 7-7, 7-10

S
SARAM mapping D-13
SAT ACC 6-313
SAT64 ACC:P 6-314
save 16−bit constant 6-164
SB 8bitOffset,COND 6-316
SBBU ACC,loc16 6-317
SBF 8bitOffset,EQ 6-318
SBF 8bitOffset,NEQ 6-318
SBF 8bitOffset,NTC 6-318
SBF 8bitOffset,TC 6-318
selecting device operating modes 7-5
set the AMODE bit 6-129
set the M0M1MAP bit 6-62
SETC C 6-320
SETC DBGM 6-320
SETC INTM 6-320
SETC OVM 6-320
SETC PAGE0 6-320
SETC SXM 6-320
SETC TC 6-320
SETC VMAP 6-320

Index

Index-12

SETC M0M1MAP 6-322
SETC mode 6-320
SETC OBJMODE 6-323
SETC XF 6-324
SFR ACC,#1..16 6-325
SFR ACC,T 6-326
shift operations 2-44
shifter 1-5
shifting values in the accumulator 2-8
Sign extension mode (SXM) C-10
signal descriptions, 14-pin header 7-4
signals 1-6

description, 14-pin header 7-4
EMU0 7-5
EMU1 7-5
PD (VCC) 7-3
TCK 7-3
TCK_RET 7-3
TDI 7-3
TDO 7-3
TMS 7-3
TRST 7-3, 7-5

sign-extension mode bit (SXM) 2-32
single-instruction state 7-7
slave mode 7-5
software breakpoints 7-7
software interrupts 3-17
SPA bit 2-36
special bus operations 1-11
SPM +1 6-327
SPM +4 6-327
SPM −1 6-327
SPM −2 6-327
SPM −3 6-327
SPM −4 6-327
SPM −5 6-327
SPM −6 6-327
SPM 0 6-327
SQRA loc16 6-329
SQRS loc16 6-331
ST0 A-2
ST0 Register Bits, table F-3
ST1 A-2
ST1 Register Bits, table F-4
stack 2-11

Stack Addressing Mode 5-2, 5-9
Stack Pointer C-4
stack pointer (SP) 2-11
Stack pointer alignment bit C-9
stack pointer alignment bit (SPA) 2-36
Stack space C-14
start address register (data logging) 7-25
status bits

ARP 2-34
C 2-25
DBGM 2-37
EALLOW 2-35
IDLESTAT 2-35
INTM 2-37
LOOP 2-35
N 2-24
OVC 2-16
OVM 2-32
PAGE0 2-36
PM 2-19
SPA 2-36
SXM 2-32
TC 2-30
V 2-21
VMAP 2-36
Z 2-25

status register A-2
Status Register Bits C-11
status register changes C-7
Status Register Comparison Between C2xLP and

C28x, figure C-7
Status Registers C-5
status registers

ST0 2-14, 2-16
quick reference figure A-4

ST1 2-14, 2-34
quick reference figure A-5

stop mode 7-7
figure of execution states 7-8

stop mode versus real-time mode, figure 7-12
store the overflow counter 6-173
SUB loc16, AX 6-339
SUB ACC,#16bit < #0..15 6-337
SUB ACC,loc16 < #0 6-333
SUB ACC,loc16 < T 6-335
SUB AX, loc16 6-338
SUBB ACC,#8bit 6-340
SUBB XARn, #7bit 6-342

Index

Index-13

SUBB SP,#7bit 6-341
SUBBL ACC, loc32 6-343
SUBCU ACC, loc16 6-345
SUBCU instruction F-14
SUBCUL ACC,loc32 6-347
SUBL ACC, loc32 6-350
SUBL ACC,P < PM 6-351
SUBL loc32, ACC 6-353
submitting ROM codes to TI B-1
SUBR loc16,AX 6-354
SUBRL loc32, ACC 6-355
SUBU ACC, loc16 6-356
SUBUL ACC, loc32 6-357
SUBUL P,loc32 6-358
suspend program execution 7-7
SXM bit 2-32
syntax change

increment/decrement D-15
repeat instructions D-15
shift D-15

T
T register 2-8
T320C28x core 1-2
TBIT loc16,#16bit 6-359
TBIT loc16,T 6-360
TC bit 2-30
TCK signal 7-4
TCLR loc16,#bit 6-361
TDI signal 7-4
terminology, debug 7-6
test, sharing resources 7-30
TEST ACC 6-362
test clock return signal (TCK_RET) 7-3
Test/control flag (TC) C-10
test/control flag bit (TC) 2-30
testing and debugging, signals 1-6
TI internal testing B-5
time-critical interrupts

definition 7-6
serviced in real-time mode 7-9

TMS signal 7-4
TMS320C20x D-1

TMS320C24x D-1
TMS320C24xx D-1
TRAP #VectorNumber 6-363
TRAP instruction 3-18, D-10
TRST signal 7-4, 7-5
TSET loc16,#16bit 6-365
types of signals 1-6

U
unprotected program-space reads and writes 4-16
UOUT *(PA),loc16 6-366

V
V bit 2-21
Vector map bit C-9
vector map bit (VMAP) 2-36
Vectors C-12
VMAP F-4

W
wait states, effects on pipeline 4-10
wait-in-reset mode 7-5
watchpoints 7-19
write to program memory 6-299

X
XAR6 register 2-12
XARn registers F-9
XB *AL 6-368
XB pma,COND 6-370
XB pma,*,ARPn 6-369
XBANZ pma,* 6-372
XBANZ pma,*,ARPn 6-372
XBANZ pma,*++ 6-372
XBANZ pma,*++,ARPn 6-372
XBANZ pma,*−− 6-372
XBANZ pma,*−−,ARPn 6-372
XBANZ pma,*0++ 6-372
XBANZ pma,*0++,ARPn 6-372
XBANZ pma,*0−− 6-372
XBANZ pma,*0−−,ARPn 6-372

Index

Index-14

XCALL *AL 6-374

XCALL pma,*,ARPn 6-375

XCALL pma,COND 6-376

XF F-4

XF pin status bit C-9

XMAC P,loc16,*(pma) 6-378

XMACD P,loc16,*(pma) 6-380

XOR AX, loc16 6-384

XOR ACC,#16bit < #0..15 6-383

XOR ACC,loc16 6-382

XOR loc16, AX 6-385

XOR loc16,#16bit 6-386

XORB AX, #8bit 6-387
XPREAD loc16,*(pma) 6-388
XPREAD loc16,*AL 6-389
XPWRITE *AL,loc16 6-390
XRET 6-391
XRETC COND 6-392

Z
ZAP OVC 6-395
ZAPA 6-396
Zero flag C-8
zero flag bit (Z) 2-25

	Title Page - SPRU430D
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Chapter 1: Architectural Overview
	1.1 Introduction to the CPU
	1.1.1 Compatibility With Other TMS320 CPUs
	1.1.2 Switching to C28x Mode From Reset

	1.2 Components of the CPU
	1.2.1 Central Processing Unit (CPU)
	1.2.2 Emulation Logic
	1.2.3 Signals

	1.3 Memory Map
	1.3.1 On-Chip Program/Data
	1.3.2 Reserved
	1.3.3 CPU Interrupt Vectors

	1.4 Memory Interface
	1.4.1 Address and Data Buses
	1.4.2 Special Bus Operations
	1.4.3 Alignment of 32-Bit Accesses to Even Addresses

	Chapter 2: Central Processing Unit
	2.1 CPU Architecture
	2.2 CPU Registers
	2.2.1 Accumulator (ACC, AH, AL)
	2.2.2 Multiplicand Register (XT)
	2.2.3 Product Register (P , PH, PL)
	2.2.4 Data Page Pointer (DP)
	2.2.5 Stack Pointer (SP)
	2.2.6 Auxiliary Registers (XAR0
	2.2.7 Program Counter (PC)
	2.2.8 Return Program Counter (RPC)
	2.2.9 Status Registers (ST0, ST1)
	2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER)

	2.3 Status Register (ST0)
	2.4 Status Register ST1
	2.5 Program Flow
	2.5.1 Interrupts
	2.5.2 Branches, Calls, and Returns
	2.5.3 Repeating a Single Instruction
	2.5.4 Instruction Pipeline

	2.6 Multiply Operations
	2.6.1 16-bit X 16-bit Multiplication
	2.6.2 32-Bit X 32-Bit Multiplication

	2.7 Shift Operations

	Chapter 3: CPU Interrupts and Reset
	3.1 CPU Interrupts Overview
	3.2 CPU Interrupt Vectors and Priorities
	3.3 Maskable Interrupts: INT1\-INT14\, DLOGINT, and RTOSINT
	3.3.1 CPU Interrupt Flag Register (IFR)
	3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register (DBGIER)

	3.4 Standard Operation for Maskable Interrupts
	3.5 Nonmaskable Interrupts
	3.5.1 INTR Instruction
	3.5.2 TRAP Instruction
	3.5.3 Hardware Interrupt NMI

	3.6 Illegal-Instruction Trap
	3.7 Hardware Reset (RS)\

	Chapter 4: Pipeline
	4.1 Pipelining of Instructions
	4.1.1 Decoupled Pipeline Segments
	4.1.2 Instruction-Fetch Mechanism
	4.1.3 Address Counters FC, IC, and PC

	4.2 Visualizing Pipeline Activity
	4.3 Freezes in Pipeline Activity
	4.3.1 Wait States
	4.3.2 Instruction-Not-Available Condition

	4.4 Pipeline Protection
	4.4.1 Protection During Reads and Writes to the Same Data-Space Location
	4.4.2 Protection Against Register Conflicts

	4.5 Avoiding Unprotected Operations
	4.5.1 Unprotected Program-Space Reads and Writes
	4.5.2 An Access to One Location That Affects Another Location
	4.5.3 Write Followed By Read Protection Mode

	Chapter 5: C28x Addressing Modes
	5.1 Types of Addressing Modes
	5.2 Addressing Modes Select Bit (AMODE)
	5.3 Assembler/Compiler Tracking of AMODE Bit
	5.4 Direct Addressing Modes (DP)
	5.5 Stack Addressing Modes (SP)
	5.6 Indirect Addressing Modes
	5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7)
	5.6.2 C2xLP Indirect Addressing Modes (ARP , XAR0 to XAR7)
	5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1)

	5.7 Register Addressing Modes
	5.7.1 32-Bit Register Addressing Modes
	5.7.2 16-Bit Register Addressing Modes

	5.8 Data/Program/IO Space Immediate Addressing Modes
	5.9 Program Space Indirect Addressing Modes
	5.10 Byte Addressing Modes
	5.11 Alignment of 32-Bit Operations

	Chapter 6: C28x Assembly Language Instructions
	6.1 Instruction Set Summary (Organized by Function)
	6.2 Register Operations

	Chapter 7: Emulation Features
	7.1 Overview of Emulation Features
	7.2 Debug Interface
	7.3 Debug Terminology
	7.4 Execution Control Modes
	7.4.1 Stop Mode
	7.4.2 Real-Time Mode
	7.4.3 Summary of Stop Mode and Real-Time Mode

	7.5 Aborting Interrupts With the ABORTI Instruction
	7.6 DT-DMA Mechanism
	7.7 Analysis Breakpoints, Watchpoints, and Counter(s)
	7.7.1 Analysis Breakpoints
	7.7.2 Watchpoints
	7.7.3 Benchmark Counter/Event Counter(s)
	7.7.4 Typical Analysis Unit Configurations

	7.8 Data Logging
	7.8.1 Creating a Data Logging Transfer Buffer
	7.8.2 Accessing the Emulation Registers Properly
	7.8.3 Data Log Interrupt (DLOGINT)
	7.8.4 Examples of Data Logging

	7.9 Sharing Analysis Resources
	7.10 Diagnostics and Recovery

	Appendix A: Register Quick Reference
	A.1 Reset Values of and Instructions for Accessing the Registers
	A.2 Register Figures

	Appendix B: Submitting ROM Codes to TI
	B.1 Introduction
	B.2 Code Submission
	B.3 ROM Layout
	B.4 ROM Code Generation Flow

	Appendix C: C2xLP and C28x Architectural Differences
	C.1 Summary of Architecture Differences Between C2xLP and C28x
	C.1.1 Enhancements of the C28x over the C2xLP:

	C.2 Registers
	C.2.1 CPU Register Changes
	C.2.2 Data Page (DP) Pointer Changes
	C.2.2.1 C2xLP DP
	C.2.2.2 C28x DP

	C.2.3 Status Register Changes
	C.2.4 Register Reset Conditions

	C.3 Memory Map

	Appendix D: C2xLP Migration Guidelines
	D.1 Introduction
	D.2 Recommended Migration Flow
	D.3 Mixing C2xLP and C28x Assembly
	D.4 Code Examples
	D.4.1 Boot Code for C28x operating mode initalization
	D.4.2 IER/IFR Code
	D.4.3 Context Save/Restore

	D.5 Reference Tables for C2xLP Code Migration Topics

	Appendix E: C2xLP Instruction Set Compatibility
	E.1 Condition Tests on Flags
	E.2 C2xLP vs. C28x Mnemonics
	E.3 Repeatable Instructions

	Appendix F: Migration From C27x to C28x
	F.1 Architecture Changes
	F.1.1 Changes to Registers
	F.1.2 Full Context Save and Restore
	F.1.3 B0/B1 Memory Map Consideration
	F.1.4 C27x Object Compatibility

	F.2 Moving to a C28x Object
	F.2.1 Caution When Changing OJBMODE

	F.3 Migrating to C28x Object Code
	F.3.1 Instruction Syntax Changes
	F.3.2 Repeatable Instructions
	F.3.3 Changes to the SUBCU Instruction

	F.4 Compiling C28x Source Code

	Appendix G: Glossary
	Index

