
# Micro Processor & Controller

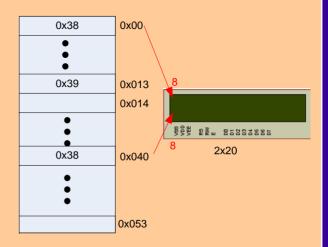
Parallel Bus – LCD Display

# LCD Display Pin Assignment

| Pin No. | Symbol   | Level      | Description                              |
|---------|----------|------------|------------------------------------------|
| 1       | $V_{SS}$ | 0V         | Ground                                   |
| 2       | $V_{DD}$ | 5.0V       | Supply Voltage for logic                 |
| 3       | VO       | (Variable) | Operating voltage for LCD                |
| 4       | RS       | H/L        | H: DATA, L: Instruction code             |
| 5       | R/W      | H/L        | H: Read(MPU→Module) L: Write(MPU→Module) |
| 6       | Е        | H,H→L      | Chip enable signal                       |
| 7       | DB0      | H/L        | Data bit 0                               |
| 8       | DB1      | H/L        | Data bit 1                               |
| 9       | DB2      | H/L        | Data bit 2                               |
| 10      | DB3      | H/L        | Data bit 3                               |
| 11      | DB4      | H/L        | Data bit 4                               |
| 12      | DB5      | H/L        | Data bit 5                               |
| 13      | DB6      | H/L        | Data bit 6                               |
| 14      | DB7      | H/L        | Data bit 7                               |
| 15      | A        | _          | LED +                                    |
| 16      | K        | _          | LED-                                     |

# LCD Display Architecture




Character located DDRAM address DDRAM address

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F |

# LCD Display Hardware

#### Hardware

- 16 x 2-line LCD displays (two lines with 16 characters per line)
- LCD has a display Data RAM (registers) that stores data in 8-bit character code.
- Each register in Data RAM has its own address
   that corresponds to its position on the line.
- The address range for Line 1 is 00 to 0FH and Line 2 is 40H to 4FH.



## **Instructions Table**

| Instruction                      |    |     |            | Ins | structi    | on Co | de  |     | Description | Execution time |                                                                                                                                           |               |  |
|----------------------------------|----|-----|------------|-----|------------|-------|-----|-----|-------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Instruction                      | RS | R/W | DB7        | DB6 | DB5        | DB4   | DB3 | DB2 | DB1         | DB0            | Description                                                                                                                               | (fosc=270Khz) |  |
| Clear Display                    | 0  | 0   | 0          | 0   | 0          | 0     | 0   | 0   | 0           | 1              | Write "00H" to DDRAM and set<br>DDRAM address to "00H" from AC                                                                            | 1.53ms        |  |
| Return Home                      | 0  | 0   | 0          | 0   | 0          | 0     | 0   | 0   | 1           | _              | Set DDRAM address to "00H" from AC<br>and return cursor to its original position<br>if shifted. The contents of DDRAM are<br>not changed. | 1.53ms        |  |
| Entry Mode<br>Set                | 0  | 0   | 0          | 0   | 0          | 0     | 0   | 1   | I/D         | SH             | Assign cursor move direction and enable the shift of entire display.                                                                      | 39 μ s        |  |
| Display<br>ON/OFF<br>Control     | 0  | 0   | 0          | 0   | 0          | 0     | 1   | D   | С           | В              | Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.                                                               | 39 μ s        |  |
| Cursor or<br>Display Shift       | 0  | 0   | 0          | 0   | 0          | 1     | S/C | R/L | _           | _              | Set cursor moving and display shift<br>control bit, and the direction, without<br>changing of DDRAM data.                                 | 39 μ s        |  |
| Function Set                     | 0  | 0   | 0          | 0   | 1          | DL    | N   | F   | _           | _              | Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots)        | 39 μ s        |  |
| Set CGRAM<br>Address             | 0  | 0   | 0          | 1   | AC5        | AC4   | AC3 | AC2 | AC1         | AC0            | Set CGRAM address in address counter.                                                                                                     | 39 μ s        |  |
| Set DDRAM<br>Address             | 0  | 0   | 1          | AC6 | AC5        | AC4   | AC3 | AC2 | AC1         | AC0            | Set DDRAM address in address counter.                                                                                                     | 39 μ s        |  |
| Read Busy<br>Flag and<br>Address | 0  | 1   | BF         | AC6 | AC5        | AC4   | AC3 | AC2 | AC1         | AC0            | Whether during internal operation or not<br>can be known by reading BF. The<br>contents of address counter can also be<br>read.           | 0 μ s         |  |
| Write Data to<br>RAM             | 1  | 0   | <b>D</b> 7 | D6  | <b>D</b> 5 | D4    | D3  | D2  | D1          | D0             | Write data into internal RAM (DDRAM/CGRAM).                                                                                               | 43 μ s        |  |
| Read Data<br>from RAM            | 1  | 1   | <b>D</b> 7 | D6  | D5         | D4    | D3  | D2  | D1          | D0             | Read data from internal RAM (DDRAM/CGRAM).                                                                                                | 43 μ s        |  |

\* "-": don't care

# **Instructions Table**

| RS | R/W | DB <sub>7</sub> | DB <sub>6</sub> | DB <sub>5</sub> | DB <sub>4</sub> | DB <sub>3</sub> | DB <sub>2</sub> | DB <sub>1</sub> | $DB_0$ | Description                                                             |  |  |
|----|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|-------------------------------------------------------------------------|--|--|
| 0  | 0   | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 1      | Clears all display, return cursor home                                  |  |  |
| 0  | 0   | 0               | 0               | 0               | 0               | 0               | 0               | 1               | *      | Returns cursor home                                                     |  |  |
| 0  | 0   | 0               | 0               | 0               | 0               | 0               | 1               | I/D             | S      | Sets cursor move direction and/or specifies not to shift display        |  |  |
| 0  | 0   | 0               | 0               | 0               | 0               | 1               | D               | C               | В      | ON/OFF of all display(D), cursor<br>ON/OFF (C), and blink position (B)  |  |  |
| 0  | 0   | 0               | 0               | 0               | 1               | S/C             | R/L             | *               | *      | Move cursor and shifts display                                          |  |  |
| 0  | 0   | 0               | 0               | 1               | DL              | N               | F               | *               | *      | Sets interface data length, number of display lines, and character font |  |  |
| 1  | 0   |                 |                 |                 | WRITE           | E DATA          | Writes Data     |                 |        |                                                                         |  |  |

### **Control & Data Format**

#### **CODES**

I/D = 1 cursor moves left

DL = 1.8-bit

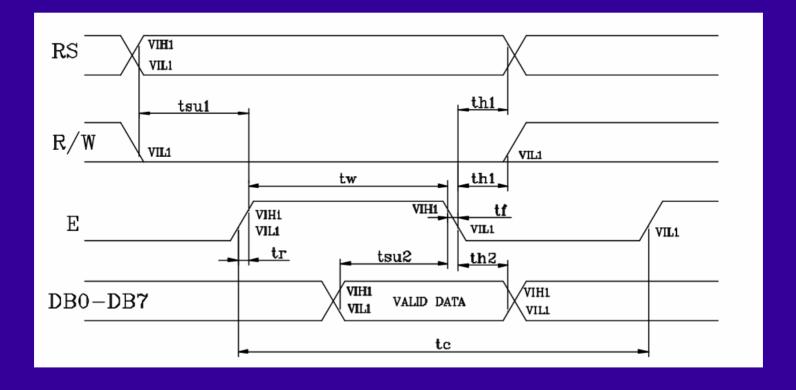
I/D = 0 cursor moves right DL = 0 4-bit

S = 1 with display shift N = 1 2 rows

S/C = 1 display shift

N = 0.1 row

S/C = 0 cursor movement F = 1.5x10 dots


R/L = 1 shift to right

F = 0.5x7 dots

R/L = 0 shift to left

# LCD Controller Timing

| Parameter                 | Symbol                 | Test pin | Min. | Тур. | Max. | Unit |
|---------------------------|------------------------|----------|------|------|------|------|
| Enable cycle time         | tc                     |          | 500  | •    | •    |      |
| Enable pulse width        | $t_{\rm w}$            | E        | 300  | -    | -    |      |
| Enable rise/fall time     | <b>t</b> r, <b>t</b> f |          | -    | •    | 25   |      |
| RS; R/W setup time        | t <sub>su1</sub>       | RS; R/W  | 100  | -    | -    | ns   |
| RS; R/W address hold time | <b>t</b> h1            | RS; R/W  | 10   | -    | -    |      |
| Read data output delay    | tsu2                   | DB0~DB7  | 60   | -    | -    |      |
| Read data hold time       | th2                    | DB0~DB/  | 10   | -    | -    |      |



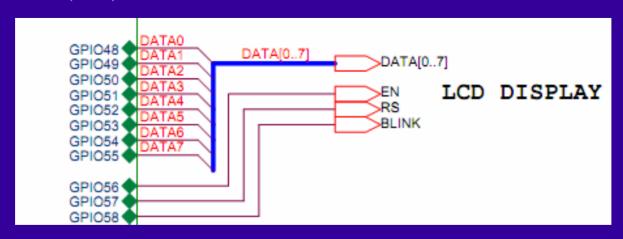
# Interfacing LCD

#### Writing to LCD.

- The MPU:
  - Asserts **RS** (low to select IR, high to select DR).
  - Writes into LCD by asserting the R/W signal low.
  - Write data (char or instruction) to Data Bus.
  - Asserts the E signal high and then low (toggles) to latch a data byte or an instruction (Delay of 1 us is needed).

## **EVB** with LCD controller




RS (function select) RS=0 command mode, RS=1 data mode – **GPIO57** 

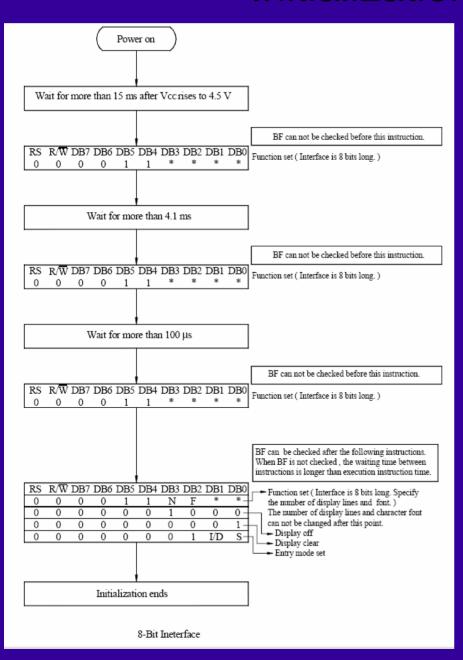
W/R (write or read) Always 0 – write only mode

E (Latch enable) falling edge – **GPIO56** 

Blink (display background light) – **GPIO58** 

Data bus (8 bit) – **GPIO 48-55** 




## **Initialize LCD**

### Software

### To write into the LCD, the program should:

- Send the initial instructions (commands) to set up the LCD in the 4-bit or the 8-bit mode.
- Write instructions to IR to set up the LCD parameters such as the number of display lines and cursor status.
- Write data to display a message.

### Initialization Procedure



```
void InItLCD(void)
{
  static const char LcdInitStr[] = {0x38, 0x0E, 0x06, 0x01};
  int i;

LcdControlBit(0);  // Control

for (i=0; i<4; i++)
  {
   LcdEnablelBit(1);
   LcdWriteData(LcdInitStr[i]);
   DELAY_US(10000);
   LcdEnablelBit(0);
   DELAY_US(5000);
  }
}</pre>
```

# **LCD** Library

```
8 Tibble:
              Delfino Evaluation Board LCD 2x16 Display
* Filename:
              LCD2x16Display.c
              20-11-2014
* Last Modify:
              20-11-2014
  File Version:
              1.0
              Flaxer Eli
   Company:
              Flaxer.net
#include "DSP20x Project.h" // Device Header file and Examples Include File
static inline void LcdControlBit(int bit)
 if (bit)
   GpioDataRegs.GPBSET.bit.GPIO57 = 1:
   GpioDataReqs.GPBCLEAR.bit.GPIO57 = 1;
static inline void LcdEnablelBit(int bit)
   GpioDataRegs.GPBSET.bit.GPIO56 = 1:
   GpioDataReqs.GPBCLEAR.bit.GPIO56 = 1;
static inline void LcdBlinklBit(int bit)
 if (bit)
   GpioDataRegs.GPBSET.bit.GPIO58 = 1:
   GpioDataRegs.GPECLEAR.bit.GPIO58 = 1;
static inline void LcdWriteData(char data)
 GoioDataRegs.GPBCLEAR.all = (0xFFL << 16): // Clear all data bits GPIO48-GPIO55
 GpioDataRegs.GPBSET.all = ((long)data << 16); // Set the relevant data bits GPIO48-GPIO55</pre>
void BackLightLCD(int x)
LcdBlinklBit(x):
void PutcLCD(const char c)
LcdControlBit(1):
 DELAY US(1);
 LcdEnablelBit(1);
 LcdWriteData(c);
```