Chapter 2

Sequential Logic Design

Process Control

Logic Devices

- Logic devices divide into two major types:
- Combinational Logic
- Current output depends on current input only
- Gates, decoders, multiplexers, ALUs
- Sequential Logic
- Current output depends on past inputs as well as current input
- Thus has a memory (usually called the state)
- Latches, flip-flops, state machines, counters, shift registers

Sequential Logic Definitions

- Clock - the master timing element behind the state changes of most sequential circuits.
- a clock signal is active high if the state changes occur at the rising edge - and active low if state changes occur at the falling edge.
- Clock Period - time between successive transitions in the same direction
- Clock Frequency - reciprocal of the clock period.
- Duty Cycle - the percentage of time that a clock is at its assertion level.

What Are Latches and Flip-flops?

- Common feedback sequential circuits
- Latch
- Single-bit storage (memory)
- Changes state at any time due to input change
- Flip-flop
- Also single-bit storage
- Changes state ONLY when a clock edge or pulse is applied

Types of Latches and Flip-flops

- Latches
- S-R Latch
- S-R Latch with Enable
- D Latch
- Flip-flops
- Edge-Triggered D Flip-Flop
- Edge-Triggered S-R Flip-Flop
- Edge-Triggered J-K Flip-Flop
- T Flip-Flop
Set

Negative-Edge-Triggered D Flip-Flop

T (toggle) Flip-Flop

- A T flip-flop changes state on every clock tick.
- Possible circuit designs

- T without enable

T	CLK	\mathbf{Q}	$/ \mathrm{Q}$
0	\uparrow	Q	$/ \mathrm{Q}$
1	\uparrow	$/ \mathrm{Q}$	Q
X	0	Q	$/ \mathrm{Q}$
X	1	Q	$/ \mathrm{Q}$

T with enable

Flip-Flop

SR F.F.

T F.F.

