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 1.1 Introduction

This section discusses some of the fundamental elements of VHDL implemented in Warp.

Topics include:

• identifiers

• data objects (constants, variables, signals)

• data types, including pre-defined types, user-definable types, subtypes, and composite 
types

• operators, including logical, relational, adding, multiplying, miscellaneous, 
assignment, and association operators

• entities

• architectures, for behavioral data flow and structural descriptions

• packages and libraries

Designs in VHDL are created in what are called entity and architecture pairs. Entities and 
architectures are discussed in Sections 1.6 Entities and 1.7 Architectures. Sections leading 
up to this discussion cover VHDL language basics such as identifiers, data objects, data 
types, operators, and syntax.
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1.2 Identifiers

An identifier in VHDL is composed of a sequence of one or more alphabetic, numeric, or 
underscore characters.

Legal characters for identifiers in VHDL include uppercase letters (A...Z), lowercase 
letters (a...z), digits (0...9), and the underscore character (_).

The first character in an identifier must be a letter. 

The last character in an identifier cannot be an underscore character. In addition, two 
underscore characters cannot appear consecutively.

Lowercase and uppercase letters are considered identical when used in an identifier; thus, 
SignalA, signala, and SIGNALA all refer to the same identifier.

Comments in a VHDL description begin with two consecutive hyphens (--), and extend to 
the end of the line. Comments can appear anywhere within a VHDL description.
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VHDL defines a set of reserved words, called keywords, that cannot be used as identifiers.

Examples:

-- this is a comment.

-- this is the first line of 
-- a three-line comment. Note the repetition
-- of the double hyphens for each line.

entity mydesign is -- comment at the end of a line

The following are legal identifiers in VHDL:

SignalA
Hen3ry
Output_Enable
C3PO
THX_1138

The following are not legal identifiers in VHDL:

3POC -- identifier can not start with a digit
_Output_Enable -- or an underscore character
My__Design -- or have two consecutive underscores
My_Entity_ -- can’t end with an underscore, either
Sig% -- percent sign is an illegal character
Signal -- reserved word
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1.3 Data Objects

A data object holds a value of some specified type. In VHDL, all data objects belong to 
one of three classes: constants, variables, or signals.

Constant Declaration
constant identifier[,identifier...]:type:=value;

Variable Declaration
variable identifier[,identifier...]:type[:=value];

Signal Declaration
signal identifier[,identifier...]:type [:=value];
An object of class constant can hold a single value of a given type. A constant must be 
assigned a value upon declaration. This value cannot be changed within the design 
description.

An object of class variable can also hold a single value of a given type at any point in the 
design description. A variable, however, can take on many different values within the 
design description. Values are assigned to a variable by means of a variable assignment 
statement.

An object of class signal is similar to an object of class variable in Warp, with one 
important difference: signals can hold or pass logic values, while variables cannot. Signals 
can therefore be synthesized to memory elements or wires. 

Variables have no such hardware analogies. Instead, variables are simply used as indexes 
or value holders to perform computations incidental to modeling components. 

Most data objects in VHDL, whether constants, variables, or signals, must be declared 
before they can be used. Objects can be given a value at declaration time by means of the 
":=" operator.

Exceptions to the "always-declare-before-using" rule include:

• The ports of an entity are implicitly declared as signals.

• The generics of an entity are implicitly declared as constants.

• The formal function parameters must be constants or signals, and are implicitly 
declared by the function declaration. The formal procedure parameters can be 
constants, variables, or signals, and are implicitly declared by the procedure 
declaration.
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• The indices of a loop or generate statement are implicitly declared when the loop or 

generate statement begins, and disappear when it ends.

Examples:

constant bus_width:integer := 8;

This example defines an integer constant called bus_width and gives it a 
value of 8.

variable ctrl_bits:std_logic_vector(7 downto 0);

This example defines an eight-element bit_vector called ctrl_bits.

signal sig1, sig2, sig3:std_logic;

This example defines three signals of type std_logic, named sig1, sig2, and sig3.
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1.4 Data Types

A data type is a name that specifies the set of values that a data object can hold and the 
operations that are permissible on those values. 
Warp supports the following pre-defined VHDL types:

• integer

• boolean

• bit

• character

• string

• bit_vector

• std_logic

• std_logic_vector

Warp also gives the user the capability to define subtypes and composite types by 
modifying these basic types, and to define particular types by combining elements of 
different types.

Warp’s pre-defined types, and Warp’s facilities for defining subtypes, composite types, 
and user-defined types, are all discussed in the following pages.

Note – VHDL is a strongly typed language. Data objects of one type 
cannot be assigned to data objects of another, and operations are not 
allowed on data objects of differing types. Warp provides functions for 
converting vectors to integers or integers to vectors and functions for 
allowing certain operations on differing data types.

1.4.1 Pre-Defined Types
Warp supports the following pre-defined VHDL types: integer, boolean, bit, character, 
string, bit_vector, std_logic, and std_logic_vector.

Integer
VHDL allows each implementation to specify the range of the integer type differently. 
However, the range must extend from at least -(2**31-1) to +(2**31-1), or -2147483648 
to +2147483647. Warp allows data objects of type integer to take on any value in this 
range.
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 Boolean
Data objects of this type can take on the values true or false.

BitData
Objects of this type can take on the values 0 or 1.

Character
Data objects of type character can take on values consisting of any of the 128 standard 
ASCII characters. The non-printable ASCII characters are represented by two or three-
character identifiers, as follows: NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, 
LF, VT, FF, CC, S0, S1, DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, 
ESC, FSP, GSP, RSP, and USP.

String
A string is an array of characters. 

Example:

variable greeting:string(1 to 13):="Hello, world!";
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Bit_Vector
A bit_vector is an array of bits in ascending or descending order and provides an easy 
means to manipulate buses. Bit_vectors can be declared as follows:

signal a, b:bit_vector(0 to 7);
signal c, d:bit_vector(7 downto 0);
signal e:bit_vector(0 to 5);

Note – bit_vector constants are specified with double quote marks ( " ), 
whereas single bit constants are specified with single quote marks ( ’ ).

If these signals are subsequently assigned the following values:

a <= "00110101";
c <= "00110101";
b <= x"7A";
d <= x"7A";
e <= O"25";
then we can compare the individual bits of a and c to discover that a(7) is ’1’, a(6) is ’0’, 
a(5) is ’1’, a(4) is ’0’,..., a(0) is ’0’ whereas c(7) is ’0’, c(6) is ’0’, c(5) is ’1’, c(4) is ’1’,... 
c(0) is ’1’. This is because the bits of signal a are in ascending order, and the bits of signal 
b are in descending order, and the assignment is made simply from the left most index to 
the right most index.

The prefix of ’X’ or ’x’ denotes a hexadecimal value; a prefix of ’O’ or ’o’ denotes an 
octal value; a prefix of ’B’ or ’b’ denotes a binary value. If no prefix is included, a value of 
’b’ is assumed. Underscore characters may be freely mixed in with the bit_vector value for 
clarity. Hexadecimal and octal designators should only be used if the hexadecimal or octal 
value can be directly mapped to the size of the bit_vector. For example, if ’x’ is a 
bit_vector(0 to 5), then the assignment a <= x"B"; cannot be made because the 
hexadecimal number ’B’ uses four bits and does not match the size of the bit_vector to 
which it is being assigned.
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 String Literals
A value that represents a (one-dimensional) string of characters is called a string literal. 
String literals are written by enclosing the characters of the string within double quotes 
("..."). String literals can be assigned either to objects of type string or to objects of type 
bit_vector (or other types of vectors whose base type is compatible with the string 
contents), as long as both objects have been declared with enough elements to contain all 
the characters of the string:

variable err_msg:string(1 to 18);
err_msg := "Fatal error found!";
signal bus_a:bit_vector(7 downto 0);
bus_a<= "10011110";
signal bus_b:std_logic_vector(7 downto 0);
bus_b <= "ZZZZZZZZ" ;

std_logic
std_logic is similar to the basic type bit except that it is not defined within the language. 
The IEEE std_logic_1164 packages defines std_logic as a type which can have values 
’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, or ’-’. 

For synthesis purposes, however, only ’0’, ’1’, ’Z’ and ’-’ are supported as valid values. 
The values ’Z’ and ’-’ also have additional restrictions on how and where they can be 
used. 

The values ’0’ and ’1’ can be used anywhere in the design. 

The ’Z’ which represents the high impedance state can only be used in an assignment to a 
top level output and has to map to a physical pin on the device. 

The ’-’ which represents a don’t care can be used in an assignment but cannot be used to 
compare values of non-constant signals (in if-then-else or case statements). The std_match 
functions defined in the numeric packages, however, can be used to compare input don’t 
cares.

std_logic_vector
The std_logic_vector is simply a vector or an array of elements of type std_logic. Its use 
is very similar to the bit_vector type. The main difference between a bit_vector and the 
std_logic_vector is the type of the elements of the array.

1.4.2 Enumerated Types
An enumerated type is a type with a user-defined set of possible values.
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Enumerated Type Declaration
type name is (value[,value...]);
The order in which the values are listed in an enumeration type’s declaration defines the 
lexical ordering for that type. That is, when relational operators are used to compare two 
objects of an enumerated type, a given value is always less than another value that appears 
to its right in the type declaration. The position number of the leftmost value is 0; the 
position number of other values is one more than that of the value to its left in the type 
declaration.

Examples:

type arith_op is (add,sub,mul,div);

This example defines an enumerated type named arith_op whose possible values are add, 
sub, mul, and div.

type states is (state0, state1, state2, state3)

This example defines an enumerated type named states, with four possible values: state0, 
state1, state2, and state3.

1.4.3 Subtypes
A subtype is a subset of a larger type.

Subtype Declaration
subtype type is 

base_type range value {to | downto} value;
Subtypes are useful for range checking or for enforcing constraints upon objects of larger 
types.

Examples:

subtype byte is std_logic_vector(7 downto 0);
subtype single_digit is integer range 0 to 9;

These examples define subtypes called byte and single_digit. Signals or variables that 
are declared as byte are std_logic_vectors of eight bits in descending order. Signals or 
variables that are declared as single_digit are integers with possible values consisting of 
the integers 0 through 9, inclusive.

subtype byte is std_logic_vector(7 downto 0);
type arith_op is (add,sub,mul,div);
subtype add_op is arith_op range add to sub;
subtype mul_op is arith_op range mul to div;
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This example first defines an enumerated type called arith_op, with possible values add, 
sub, mul, and div. It then defines two subtypes: add_op, with possible values add and 
sub, and mul_op, with possible values mul and div.

1.4.4 Composite Types
A composite type is a type made up of several elements from another type. There are two 
kinds of composite types: arrays and records.

Array Type Declaration
type name is array ({low to high}|

 {high downto low}) of base_type;

Record Type Declaration
record type is record

element:element_type
[;element:element_type...];

end record;
An array is a data object consisting of a collection of elements of the same type. Arrays 
can have one or more dimensions. Individual elements of arrays can be referenced by 
specifying an index value into the array (see examples). Multiple elements of arrays can 
be referenced using aggregates.

A record is a data object consisting of a collection of elements of different types. Records 
in VHDL are analogous to records in Pascal and struct declarations in C. Individual fields 
of a record can be referenced by using selected names (see examples). Multiple elements 
of records can be referenced using aggregates.

Examples:

The following are examples of array type declarations:

type big_word is array (0 to 63) of std_logic;
type matrix_type is array (0 to 15, 0 to 31) of std_logic;
type values_type is array (0 to 127) of integer;

Possible object declarations using these types include:
signal word1,word2:big_word;
signal device_matrix:matrix_type;
variable current_values:values_type;

Some possible ways of assigning values to elements of these objects include:
word1(0)<=’1’; -- assigns value to 0th element in word1
word1(5)<=; -- assigns value to 5th element in word1
word2 <= word1; -- makes word2 identical to word1
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word2(63) <= device_matrix(15,31); -- transfers value
-- of element from device_matrix to element of word2
current_values(0) := 0;
current_values(127) := 1000;

The following includes an example of a record type declaration:
type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
op1:integer;
op2:integer;
end record;

Here are two object declarations using this record type declaration:
variable inst1, inst2:instruction;

Some possible ways of assigning values to elements of these objects include:
inst1.opcode := add; -- assigns value to opcode of inst1
inst2.opcode := sub; -- assigns value to opcode of inst2
inst1.op1 := inst2.op2; -- copies op2 of inst2

-- to op1 of inst2
inst2 := inst1; -- makes inst2 identical to inst1
Warp HDL Reference Manual 13
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 1.5 Operators

VHDL provides a number of operators used to construct expressions to compute values. 
VHDL also uses assignment and association operators.

VHDL’s expression operators are divided into five groups. They are (in increasing order of 
precedence): logical, relational, adding, multiplying, and miscellaneous. 

In addition, there are assignment operators that transfer values from one data object to 
another and association operators that associate one data object with another.

Table 1-1 lists the VHDL operators that Warp supports.

1.5.1 Logical Operators
The logical operators AND, OR, NAND, NOR, XOR, XNOR, and NOT are defined for 
predefined types bit and boolean. These operators are also available for the type 
std_logic.

AND, OR, NAND, and NOR are "short-circuit" operations for bit and boolean types. The 
right operand is evaluated only if the value of the left operand is not sufficient to 
determine the result of the operation. For operations AND and NAND, the right operand is 
evaluated only if the value of the left operand is true. For operations OR and NOR, the 
right operand is evaluated only if the value of the left operand is false.

Note that there is no differentiation of precedence among the binary boolean operators. 
Thus, successive boolean operators in an expression must be delimited by parentheses to 
guarantee error-free parsing and evaluation.

This is a legal example:

Table 1-1  Supported Operators

Logical Operators and, or, nand, nor, xor, xnor, not

Adding Operators +, -, &

Multiplying Operators *, /, mod, rem

Miscellaneous Operators abs, **

Assignment Operators <=, :=

Association Operator =>

Shift Operators sll, srl, sla, sra, rol, ror
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a <= b AND c OR d

This is not a legal example:

a <= (b AND c) OR d 

1.5.2 Relational Operators
Relational operators include tests for equality, inequality, and ordering of operands. 

The operands of each relational operator must be of the same type. The result of each 
relational operation is of type boolean.

The equality operator "=" returns true if the two operands are equal, false otherwise. The 
inequality operator "/=" returns false if the two operands are equal, true otherwise.

 Two scalar values of the same type are equal if and only if their values are the same. Two 
composite values of the same type (e.g., vectors) are equal if and only if for each element 
of the left operand there is a matching element of the right operand, and the values of 
matching elements are equal.

The ordering operators are defined for any scalar type and for array types (e.g., vectors). 
For scalar types, ordering is defined in terms of relative values (e.g., ’0’ is always less than 
’1’). For array types, the relation "<" (less than) is defined such that the left operand is less 
than the right operand if and only if:

• the left operand is a null array and the right operand is a non-null array; otherwise

• both operands are non-null arrays, and one of the following conditions is satisfied:

• the leftmost element of the left operand is less than that of the right; or

• the leftmost element of the left operand is equal to that of the right, and the tail of the 
left operand is less than that of the right. The tail consists of the remaining elements to 
the right of the leftmost element and can be null.

The relation "<=" (less than or equal to) for array types is defined to be the inclusive 
disjunction of the results of the "<" and "=" operators for the same two operands (i.e., it's 
true if either the "<" or "=" relations are true). The relations ">" (greater than) and ">=" 
(greater than or equal to) are defined to be the complements of "<=" and "<", respectively, 
for the same two operands.

1.5.3 Adding Operators
In VHDL, the "+" and "-" operators perform addition and subtraction, respectively. The 
’&’ operator concatenates characters, strings, bits or bit/std_logic vectors. All three of 
these operators have the same precedence, and so are grouped under the category Adding 
Operators.
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The adding operators "+" and "-" are defined for integers and retain their conventional 
meaning.

These operations are also supported for bit_vectors and other special packages. (See 
Section 1.8.1, Predefined Packages, for more information.)

In Warp, concatenation is defined for bits and arrays of bits (bit_vectors). The 
concatenation operator in Warp is "&".

If both operands are bit_vectors, the result of the concatenation is a one-dimensional array 
whose length is the sum of the lengths of the operands, and whose elements consist of the 
elements of the left operand (in left-to-right order) followed by the elements of the right 
operand (in left-to-right order). The left bound of this result is the left bound of the left 
operand, unless the left operand is a null array, in which case the result of the operation is 
the right operand. The direction of the result is the direction of the left operand, unless the 
left operand is a null array, in which case the direction of the result is that of the right 
operand.

If one operand is a bit_vector and the other is a bit, or if both are bits, the bit operand is 
replaced by an implicit one-element bit_vector having the bit operand as its only element. 
The left bound of the implicit bit_vector is 0, and its direction is ascending. This is in most 
cases an inconsequential fact if the "&" is being used during an assignment to a 
constrained vector (vector with known dimensions) but may become important if the 
concatenated vector is being assigned (or passed to a function) to a unconstrained vector.

1.5.4 Multiplying Operators
In VHDL, the "*" and "/" operators perform multiplication and division, respectively. Two 
other operands of the same precedence include the mod and rem operators. Mod and rem 
operators return the remainder when one operand is divided by another.

All the multiplication operators are defined for both operands being of the same integer or 
bit_vector type. The result is also of the same type as the operands.

The rem operation is defined as the following:

A rem B = A-(A/B)*B

where "/" in the above example indicates an integer division. The result has the sign of A 
and an absolute value less than the absolute value of B.

The mod operation is similar, except that the result has the sign of B. In addition, , for 
some integer N, the result satisfies the relation:

A mod B = A-B*N
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Note – Warp predefines the "*" only. There is currently no built-in sup-
port for "/", "mod" or the "rem" operators but they can be used if the 
user supplies the necessary overloading.

1.5.5 Miscellaneous Operators
The two miscellaneous expression operators in VHDL are "abs" and "**". 

The "abs" operator, defined for integers, returns the absolute value of its operand.

The "**" operator raises a number to a power of two. It is defined for an integer first 
operand and a power-of-two second operand. Its result is the same as shifting the bits in 
the first operand left or right by the amount specified by the second operand.

Note – Warp currently supports these operators for Constant integers 
only.

1.5.6 Assignment Operations
VHDL has two assignment operators: "<=" and ":=". The first is used for signal 
assignments, the second for variable assignments.

Variable Assignment
variable_name := expression;

Signal Assignment
signal_name <= expression;

Variable assignments can only occur inside a process. Signal assignments can occur 
anywhere inside an architecture.

Assignments to objects of composite types can be assigned values using aggregates, which 
is simply a way of specifying more than one value to be assigned to elements of an object 
with a single assignment statement. Examples of the use of aggregates are shown below.

Examples:

type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
op1:integer;
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op2:integer;

variable inst1,inst2:instruction;
signal vec1, vec2 : bit_vector(0 to 3):

vec1 <= (’1’,’0’,’1’,’0’); -- aggregate assignment
vec2 <= vec1; -- another aggregate assignment
inst1 := (add,5,10); -- aggregate assignment to record
vec1 <= (0=>’0’,others=>’1’); -- assign 0 to 0th bit,

-- set others to 1
1.5.7 Association Operations

To instantiate a component in a Warp description, the user must specify the connection 
path(s) between the ports of the component being instantiated and the interface signals of 
the entity/architecture pair being defined. This is done by means of an association list 
within a port map or a generic map.

Warp supports both named and positional association.

In named association, the user uses the "=>" association operator to associate a formal (the 
name of the port in the component being instantiated) with an actual (the name of the 
signal in the entity being defined). The association operator is considered an "arrow" 
indicating direction. It's easy to remember which way to make the arrow point: it always 
points to the actual. For example, in the following instantiation of a predefined D flip-flop,

st0: DSRFF port map(
d => dat,
s => set,
r => rst,
clk => clk,
q => duh);

the arrow always points toward the ports of the defined component, the DSRFF in this 
case. Named association allows the user to associate the signals in any order he desires. In 
the previous example, the user could have listed the "q => duh" before "d => dat".

In positional association, the association operator is not used. Instead, the user lists the 
actuals (signals names) in the port map in the same order as the formals of the component 
being instantiated, without including the formal names at all.

For example, the jkff component is declared as follows:

component jkff port(
j : in bit;
k : in bit;
clk : in bit;
q : out bit);
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end component;

An association list for an instantiation of this component could use either named 
association, like this:

 jk1:jkff port map(j=>j_in,k=>k_in,clk=>clk,q=>q_out);

or positional association, like this:

 jk1:jkff port map(j_in, k_in, clk, q_out);

Either form maps signals j_in, k_in, clk, and q_out in the entity being defined to ports j, 
k, clk, and q, respectively, on the instantiated component.

1.5.8 Vector Operations
Addition, subtraction, multiplication, incrementing, decrementing, shifting inverting, and 
relational operators for vectors are defined in the predefined packages.

With the appropriate package, included within the user’s VHDL file, the user can gain 
access to the vector-vector or vector-integer operations. The specific package that is 
needed depends on the type of vectors that the user is using in the VHDL file. The 
following table associates a package with the four predefined vector types supported 
within Warp.

If using bit_vectors, the user needs the following USE clause:

use work.bit_arith.all ;

If using std_logic_vectors:

library ieee ;

Table 1-2  Package to Use with Vector Type

Vector Type Package

bit_vector bit_arith

std_logic_vector std_arith

unsigned (bit) numeric_bit

signed (bit) numeric_bit

unsigned (std_logic) numeric_std

signed (std_logic) numeric_std
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use ieee.std_logic_1164.all ;
use work.std_arith.all ;

If using unsigned or signed vectors which are bit based:

use work.numeric_bit.all ;

If using unsigned or unsigned vectors which are std_logic based:

library ieee ;
use ieee.std_logic_1164.all ;
use work.numeric_std.all ;

The types unsigned and unsigned are similar to the std_logic_vector or bit_vector 
type. This is part of an emerging standard (IEEE 1076.3) for performing numeric opera-
tions on vectored signals. The numeric_bit package defines unsigned/signed as a vector 
whose elements are of type bit and the numeric_std package defines the same with ele-
ments of type std_logic. This means that you cannot use both types of unsigned/signed 
within the same VHDL design.

In all of the above packages, the most significant bit (MSB) for a vector is considered to 
be the left-most bit. This means that in the following two vectors:

signal veca : std_logic_vector(3 downto 0) ;
signal vecb : std_logic_vector(0 to 3) ;
veca(3) is the MSB for veca and vecb(0) is the MSB for vecb.

All of the above four packages mentioned also provide certain other utility functions 
which are documented in Section 1.8 Packages.
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1.6 Entities

VHDL designs consist of entity and architecture pairs, in which the entity describes the 
design I/O or interface and the architecture describes the content of the design.Together, 
entity and architecture pairs can be used as complete design descriptions or as components 
in a hierarchical design or both.

The syntax for an entity declaration is as follows:

ENTITY entity IS PORT(
[signal][sig-name,...]:[direction] type
[;signal[sig-name,...]:[direction] type]
.
.
);

END entity-name;

The entity declaration specifies a name by which the entity can be referenced in a design 
architecture. In addition, the entity declaration specifies ports. Ports are a class of signals 
that define the entity interface. Each port has an associated signal name, mode, and type.

Choices for mode are in (default), out, inout and buffer. Mode in is used to describe ports 
that are inputs only; out is used to describe ports that are outputs only, with no feedback 
internal to the associated architecture; inout is used to describe bi-directional ports; 
buffer is used to describe ports that are outputs of the entity but are also fed back 
internally.

Two sample entity declarations appear below. 

Examples:

entity cnt3bit is port(
q:inout std_logic_vector(0 to 2);
inc,grst,rst,clk:in std_logic;
carry:out std_logic);

end cnt3bit;

entity Bus_Arbiter is port(
Clk, -- Clock
DRAM_Refresh_Request,-- Refresh Request
VIC_Wants_Bus,-- VIC Bus Request
Sparc_Wants_Bus: IN std_logic;-- Sparc Bus Request
Refresh_Control,-- DRAM Refresh Control
VIC_Has_Bus,-- VIC Has Bus
Sparc_Has_Bus: OUT std_logic);-- Sparc Has Bus

end Bus_Arbiter;

The first entity declaration shows the proper declaration for a bidirectional signal (which, 
Warp HDL Reference Manual 21



VHDL

1

in this case, is also a vector), along with several input signals and an output signal.

The second entity declaration shows how comments can be included within an entity 
declaration to document each signal's use within the entity.
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1.7 Architectures

Architectures describe the behavior or structure of associated entities. They can be either, 
or a combination of the following:

• behavioral descriptions 

These descriptions provide a means to define the "behavior" of a circuit in abstract, 
"high level" algorithms, or in terms of "low level" boolean equations.

• structural descriptions

These descriptions define the "structure" of the circuit in terms of components and 
resemble a net-list that could describe a schematic equivalent of the design. Structural 
descriptions contain hierarchy in which components are defined at different levels.
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The architecture syntax follows:

ARCHITECTURE aname OF entity IS
[type-declarations]
[signal-declarations]
[constant-declarations]

BEGIN
[architecture definition]

END aname;

Each architecture has a name and specifies the entity it defines. Types, signals, and 
constants must be declared before the architecture definition. The architecture defines the 
concurrent signal assignments, component instantiations, and processes.

Examples:

library ieee ;
use work.std_logic_1164.all ;
use work.std_arith.all;
architecture archcounter of counter is
begin
proc1:  process (clk)

        begin
                if (clk'event and clk = '1') then
                        count <= count + 1;
                end if;
        end process proc1;
        x <= '1' when count = "1001" else '0';

end archcounter;

Archcounter is an example of a behavioral architecture description of a counter and a 
signal x that is asserted when count is a particular value. This design is behavioral due to 
the algorithmic way it is described. The details of such descriptions is covered later.

library ieee ;
use work.std_logic_1164.all ;
use work.rtlpkg.all;
architecture archcapture of capture is

        signal c: std_logic;
begin

c <= a AND b;
d1: dff port map(c, clk, x);

end archcapture;

Archcapture is the name of an architectural description that is both structural and 
behavioral in nature. It is considered structural because of the component instantiation, 
and it is considered behavioral because of the boolean equation. VHDL provides the 
flexibility to combine behavioral and structural architecture descriptions.
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1.7.1 Behavioral Descriptions
Behavioral design descriptions consist of two types of statements:

• Concurrent statements which define concurrent signal assignments by way of 
association operators.

• Sequential statements within a process which enable an algorithmic way of describing 
a circuit’s behavior. Sequential statements enable signal assignments to be based on 
relational and conditional logic.

These types of statements, as well as structural descriptions, may be combined in any 
architecture description. 

Concurrent Statements
Concurrent statements are used outside of processes to implement boolean equations, 
when... else constructs, signal assignments, or generate schemes. For example:

u <= a;
v <= u;
w <= a XOR b;
x <= (a AND s) or (b AND NOT(s));
y <= (’1’ when (a=’0’ and b = ’1’) else ’0’;
z <= A when (count = "0010") else b;

Signal u is assigned the value of signal a and is its equivalent. Likewise, v is equivalent to 
both signals u and a. The signal assignment order does not matter because they are outside 
of a process and are concurrent. The next two statements implement boolean equations, 
while the last statements implement when... else constructs. The assignment for signal y 
may be read as "y gets ’1’ when a is zero and b is one, otherwise y gets ’0’." Likewise, "z 
gets a when count is "0010" otherwise z gets b."

Sequential Statements
Sequential statements must be written within a process. These statements describe signal 
assignments in an algorithmic fashion. The statement order is important, as statements in a 
process are evaluated sequentially. For example, in the process

proc1: process (x)
begin

a <= ’0’;
if x = "1011" then

a <= ’1’;
end if;

end process proc1;

signal a is first assigned ’0’. Later in the process, if x is found to be equivalent to "1011" 
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then signal a is assigned the value ’1’. 

Final signal assignments occur at the end of the process. In other words, the VHDL 
compiler evaluates the code sequentially before determining the equations to be 
synthesized, whereas the compiler synthesizes equations for concurrent statements upon 
encountering them. A process taken as a whole is a concurrent statement.

The Process
In most cases, a process has a sensitivity list: a list of signals in parentheses immediately 
following the key word "process". Signals assigned within a process can only change 
value if one of the signals in the sensitivity list transitions. If the sensitivity list is omitted, 
then the compiler infers that signal assignments are sensitive to changes in any signal.

The user may find it helpful to think of processes in terms of simulation (VHDL is also 
used for simulation) in which a process is either active or inactive. A process becomes 
active only when a signal in the sensitivity list transitions. In the following process

proc1: process (rst, clk)
begin

if rst = ’1’ then
q <= ’0’;

elsif (clk’event and clk=’1’) then
q <= d;

end if;
end process;

only transitions in rst and clk cause the process to become active. If either clk or rst 
transition, then the process becomes active, and the first condition is checked (if rst = ’1’). 
In the case that rst = ’1’ q will be assigned ’0’, otherwise the second condition is checked 
(if clk event and clk = ’1’). This condition looks for the rising edge of a clock. All 
signals within this portion of the process are sensitive to this rising edge clock, and the 
compiler infers a register for these signals. This process creates a D flip-flop with d as its 
input, q as its output, clk as the clock, and rst as an asynchronous reset.

1.7.2 Structural Descriptions
Structural descriptions are net-lists that allow the user to instantiate components in 
hierarchical designs. A port map is part of every instantiation and indicates how the ports 
of the component are connected. Structural descriptions can be combined with behavioral 
descriptions, as in the following example:

architecture archmixed of mixed is
begin
--instantiations 
cntl1: motor port map(clk, ld, en, c1, chg1, start1, stop1);
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cntl2: motor port map(clk, ld, en, c2, chg2, start2, stop2);
safety: mot_check port map(status, c1, c2);
--concurrent statement
en <= ’1’ when (status=’1’ and status = ’1’) else ’0’;
-- concurrent process with sequential statements
ok: process (clk)

begin
if (clk’event and clk=’1’) then

status <= update;
end if;

end process ok;
end archmixed;

This example shows that two motor components and one mot_check component are 
instantiated. The port maps are associated with inputs and outputs of the motor and 
mot_check components by way of positional association. Signal en is assigned by a 
concurrent statement, and signal status is assigned by a process that registers a signal 
using the common clock clk.

1.7.3 Design Methodologies
Designers can choose from multiple methods of describing designs in VHDL, depending 
on coding preferences. This section will discuss how to implement combinatorial logic, 
registered logic, counters, and state machines. The discussion of state machines will cover 
multiple implementations and the design and synthesis trade-offs for those 
implementations. Section 1.10 Additional Design Examples contains further design 
examples. Most of the design examples in this section can be found in the directory 
c:\warp\examples.

Combinatorial Logic
Following are examples of a four-bit comparator implemented in four different ways, all 
yielding the same result. In all examples, the entity is the same:

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
entity compare is port(
        a, b:   in std_logic_vector(0 to 3);
        aeqb:   out std_logic);
end compare;

The entity declaration specifies that the design has three ports: two input ports (a, b), and 
one output port (aeqb). The input ports are of type std_logic_vector and the output port 
is of type std_logic.

Using a process, the comparator can be implemented as follows: 
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use work.std_arith.all ;
architecture archcompare of compare is
begin
comp:   process (a, b)
        begin
                if a = b then
                        aeqb <= '1';
                else
                        aeqb <= '0';
                end if;
        end process comp;
end archcompare;

The design behavior is given in the architecture section. The architecture description 
consists of the process "comp". The process includes the sensitivity list (a,b) so that the 
process becomes active each time there is a change in one of these signals. The process 
permits the use of an algorithm to assert aeqb when a equals b. The std_arith package 
contains a tuned implementation for the "=" operator.

With one concurrent statement, making use of the when...else construct, the same 
comparator can be described like this:

use work.std_arith.all ;
architecture archcompare of compare is
begin
        aeqb <= '1' when (a = b) else '0';
end;

In this example, the process in the previous example has been replaced by a concurrent 
signal assignment for aeqb.
Using boolean equations, the comparator looks like this:

architecture archcompare of compare is
begin

aeqb <= NOT(
(a(0) XOR b(0)) OR
(a(1) XOR b(1)) OR
(a(2) XOR b(2)) OR
(a(3) XOR b(3)));

end;

In this example, a boolean equation replaces the when... else construct.

Finally, a structural design which implements a net list of XOR gates, a 4-input OR gate, 
and an INV gate looks like this:

use work.lpmpkg.all;
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architecture archcompare of compare is
begin

c0: Mcompare
generic map(

lpm_width => aeqb’length, -- Evaluates to 4
lpm_representation => lpm_unsigned,
lpm_hint => speed)

port map(
dataa => a, datab => b,
alb => open, aeb => aeqb, agb => open,
aleb => open, aneb => open, ageb => open);

end;

In this example, the compare architecture is described by instantiating gates much the 
same as one would by placing gates in a schematic diagram. The Mcompare component 
used in this architecture is the same as those available in the Warp LPM (Library of 
Parameterized Elements) library. The port map lists are associated with the inputs and 
outputs of the gates through named association for readability.

Many other functions or components can be implemented in multiple ways. Here is one 
last combinatorial example: a four-bit wide four-to-one multiplexer. In all versions, the 
entity is the same:

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
entity mux is port(

a, b, c, d: in std_logic_vector(3 downto 0);
s: in std_logic_vector(1 downto 0);
x: out std_logic_vector(3 downto 0));

end mux;

Using a process, the architecture looks like this:

architecture archmux of mux is
begin
mux4_1: process (a, b, c, d)
        begin
                if s = "00" then
                        x <= a;
                elsif s = "01" then
                        x <= b;
                elsif s = "10" then
                        x <= c;
                else
                        x <= d;
                end if;
        end process mux4_1;
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end archmux;

Using a concurrent statement with a when... else construct, the architecture can be 
written as the following: 

architecture archmux of mux is
begin
        x <= a when (s = "00") else
             b when (s = "01") else
             c when (s = "10") else
             d;
end archmux;

Using boolean equations, the architecture can be written as follows:
architecture archmux of mux is
begin

x(3) <= (a(3) and not(s(1)) and not(s(0)))
            OR  (b(3) and not(s(1)) and s(0))
            OR  (c(3) and s(1) and not(s(0)))
            OR  (d(3) and s(1) and s(0));

x(2) <= (a(2) and not(s(1)) and not(s(0)))
            OR  (b(2) and not(s(1)) and s(0))
            OR  (c(2) and s(1) and not(s(0)))
            OR  (d(2) and s(1) and s(0));

x(1) <= (a(1) and not(s(1)) and not(s(0)))
            OR  (b(1) and not(s(1)) and s(0))
            OR  (c(1) and s(1) and not(s(0)))
            OR  (d(1) and s(1) and s(0));

x(0) <= (a(0) and not(s(1)) and not(s(0)))
            OR  (b(0) and not(s(1)) and s(0))
            OR  (c(0) and s(1) and not(s(0)))
            OR  (d(0) and s(1) and s(0));
end archmux;

A structural approach can be written like this: 

use work.lpmpkg.all ;
architecture archmux of mux is

signal tmpBus : std_logic_vector(
((2**s’length * a’length) - 1) downto 0) ;

begin
tmpBus <= d & c & b & a ; -- Collect all inputs
mux_array: Mmux

generic map(
lpm_width => a’length, -- Width of each input
lpm_size => (2**s’length), -- Number of inputs
lpm_widths => s’length, -- Number of selectors
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lpm_hint => speed)

port map(
data => tmpBus,
sel => s,
result => x);

end archmux;

This design makes use of the multiplexer in the Warp library. Of course, the user could 
build up his own multiplexers and instantiate them instead. 

Registered Logic
There are two methods for implementing registered logic: instantiating a register (or other 
component with registers) or using a process that is sensitive to a clock edge. For example, 
if the user wanted to use a D register and a 4-bit counter, he could simply instantiate these 
components after including the appropriate packages:

use work.rtlpkg.all;
use work.lpmpkg.all;
...
d1: dsrff port map(d, s, r, clk, q); -- Defined in rtlpkg
c1: Mcounter -- Defined in lpmpkg

generic map (4)
port map(data, clk, one, one, one, count,

zero, rst, zero, zero, zero, zero
zero, zero, open) ;

Another method of using registered elements is to include a process that is sensitive to a 
clock edge or that waits for a clock edge. In processes that are sensitive to clock edges or 
that wait for clock edges, the compiler infers a register for the signals defined within that 
process. Four basic templates are supported; each is described below.

process_label: process
begin

wait until clk = ’1’;
. ..

end process;

This process does not have a sensitivity list. Instead it begins with a wait statement. The 
process will become active when clk transitions to a one (clk—or whatever identifier you 
give to your clock—can also wait for zero for devices that support such clocking 
schemes). All signal assignments within such a process will be registered, as these signals 
only change values on clock edges and retain their values between clock edges.

my_proc: process (clk)
begin

if (clk’event and clk =’1’) then
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...

end if;
end process;

This process is sensitive only to changes in the clock, as the sensitivity list indicates. The 
first statement within the process looks for a transition from zero to one in signal clk. All 
signals that are assigned within this process are also registered because the assignments 
only occur on rising clock edges, and the signals retain their values between rising clock 
edges.

your_proc: process (rst, clk)
begin

if rst = ’1’ then
...

elsif (clk’event and clk=’1’) then
...

end if;
end process;

This process is sensitive to changes in the clock and signal rst, as the sensitivity list 
indicates. This process is intended to support signals that must be registered and have an 
asynchronous set and/or reset. The first statement within the process checks to see if rst 
has been asserted. Signals that are assigned in this portion of the template are assumed to 
be registered with rst assigned as either the asynchronous reset or set of the register, as 
appropriate. If rst has not been asserted, then the remainder of this process works as does 
the previously described process.

proc1: process (rst, pst, clk)
begin

if rst = ’1’ then
...

elsif pst = ’1’ then
...

elsif (clk’event and clk=’1’) then
...

end if;
end process;

This process is sensitive to changes in the clock and signals rst and pst, as the sensitivity 
list indicates. This process is intended to support signals that must be registered and have 
an asynchronous set and reset. The first statement within the process checks to see if rst 
has been asserted. Signals that are assigned in this portion of the template are assumed to 
be registered with rst used as either the asynchronous reset or set of the register, as 
appropriate. The second condition assigns pst as the asynchronous reset or set of the 
register, as appropriate. If rst and pst have not been asserted, then the remainder of this 
process works as does the previous process.
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To register 32-bits with an asynchronous reset, the user could write the following code:

regs32: process (r, clk2)
begin

if (r = ’1’) then
q <= x"ABC123DE";

elsif (clk2’event and clk2=’1’) then
q <= d;

end if;
end process;

Assuming that q and d are declared as 32-bit signals or ports, then this code example 
implements 32 registers with d(i) as the input, q(i) as the output, clk2 as the clock, and r 
as the asynchronous reset for some of the registers and r as the asynchronous preset for the 
others. This is because resetting the q to the value x"ABC123DE" will cause some 
registers to go high and other registers to go low when r is asserted.

Counters and state machines designed with processes are described in more detail in the 
following discussions.

Counters
This is a 4-bit loadable counter:

library ieee;
use ieee.std_logic_1164.all ;
use work.std_arith.all ;

entity counter is port(
clk, load: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;
architecture archcounter of counter is
begin
upcount: process (clk)

begin
if (clk’event and clk= ’1’) then

if load = ’1’ then
count <= data;

else
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;
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The use work.std_arith.all; statement is included to make the integer/std_logic_vector 
math package visible to this design. The integer math package provides an addition 
function for adding integers to a std_logic_vector. The native VHDL addition operator 
applies only to integers. The architecture description is behavioral. In this design, the 
counter counts up or synchronously loads depending on the load control input. The 
counter is described by the process "upcount". The statement if (clk'event AND clk = 
'1') then... specifies that operation of the counter takes place on the rising edge of the 
signal clk. The subsequent if statement describes the loading and counting operation.

In this description, the if (clk'event AND clk = '1') then... statement (and its associated 
end if) could have been replaced by the statement wait until clk = '1';.

The following is a 4-bit loadable counter with synchronous reset:

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, reset, load: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;

use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk)

begin
if (clk’event and clk= ’1’) then

if reset = ’1’ then 
count <= "0000";

elsif load = ’1’ then
count <= data;

else 
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;
In this design, the counter counts up, synchronously resets depending on the reset input, 
or synchronously loads depending on the load control input. The counter is described by 
the process "upcount." That the statement if (clk'event AND clk = '1') then... appears 
first specifies that all operations of the counter take place on the rising edge of the signal, 
clk. The subsequent if statement describes the synchronous reset operation; the counter is 
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synchronously reset on the rising edge of clk. The remaining operations (load and count) 
are described in elsif or else clauses in this same if statement, therefore the reset takes 
precedence over loading or counting. If reset is not '1', then the operation of the counter 
depends upon the load signal. This operation is then identical to the counter in the 
previous example.

The following is a 4-bit loadable counter with synchronous enable and asynchronous 
reset:

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, reset, load,counten: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;

use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk, reset)

begin
if reset = ’1’ then

count <= "0000";
elsif (clk’event and clk= ’1’) then

if load = ’1’ then
count <= data;

elsif counten = ’1’ then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;
Warp HDL Reference Manual 35



VHDL

1

In this design, the counter counts up, resets depending on the reset input, or 
synchronously loads depending on the load control input. This counter is similar to the 
one in the previous example except that the reset is asynchronous. The sensitivity list for 
the process contains both clk and reset. This causes the process to be executed at any 
change in these two signals. 

The first if statement, if reset = '1' then..., states that this counter will assume a value of 
"0000" whenever reset is ’1’. This will occur when the process is activated by a change in 
the signal reset. The elsif clause that is part of this if statement, elsif (clk'event AND 
clk = '1') then..., specifies that the subsequent statements within the if are performed 
synchronously (clk'event) on the rising edge (clk = '1') of the signal clk (providing that the 
previous if/elsif clauses were not satisfied). The synchronous operation of this process is 
similar to the previous example, with the exception of the counten signal enabling the 
counter. If counten is not asserted, then count retains its previous value.

The following is a 4-bit loadable counter with synchronous enable, asynchronous reset 
and preset. 

library ieee;
use ieee.std_logic_1164.all ;

entity counter is port(
clk, rst, pst, load,counten: in std_logic;
data: in std_logic_vector(3 downto 0);
count: buffer std_logic_vector(3 downto 0));

end counter;
use work.std_arith.all;
architecture archcounter of counter is
begin
upcount: process (clk, rst, pst)

begin
if rst = ’1’ then

count <= "0000";
elsif pst = ’1’ then 

count <= "1111";
elsif (clk’event and clk= ’1’) then

if load = ’1’ then
count <= data;

elsif counten = ’1’ then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;
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In this design, the counter counts up, resets depending on the reset input, presets 
depending upon the pst signal, or synchronously loads depending on the load control 
input. This counter is similar to the previous example except that a preset control has been 
added (pst). The sensitivity list for this process contains clk, pst, and rst. This causes the 
process to be executed at any change in these three signals. 

The first if statement if rst = '1' then. implies that this counter will assume a value of 
"0000" whenever rst is ’1’. This will occur when the process is activated by a change in 
the signal rst. The first elsif clause that is part of this if statement, elsif pst = '1' then, 
implies that this counter will assume a value of "1111" whenever pst is ’1’ and rst is ’0’. 
This will occur when the process is activated by a change in the signal pst and rst is not 
’1’.

The second elsif clause that is part of this if statement, elsif (clk'event AND clk = '1') 
then, implies that the subsequent statements within the if are performed synchronously 
(clk'event) and on the rising edge (clk = ’1’) of the signal clk providing that the previous 
if / elsif clauses were not satisfied. In this regard the operation is identical to the counter 
in the previous example.

The following is an 8-bit loadable counter. The data is loaded by disabling the three-state 
output, and using the same I/O pins to load.

library ieee ;
use ieee.std_logic_1164.all ;
use work.std_arith.all ;
entity ldcnt is port (

clk, ld, oe: in std_logic;
count_io: inout std_logic_vector(7 downto 0));

end ldcnt;
architecture archldcnt of ldcnt is

signal count, data:std_logic_vector(7 downto 0);
begin
counter: process (clk)

begin
if (clk’event and clk=’1’) then

if (ld = ’1’) then
count <= data;

else
count <= count + 1;

end if;
end if;

end process counter;
count_io <= count when (oe = ’1’) else "ZZZZZZZZ" ;
data <= count_io ;

end archldcnt;
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This design performs a synchronous counter that can be loaded. The load occurs by 
disabling the output pins. This allows a signal to be driven from off chip to load the 
counter. The three-state for I/O pins is accomplished with the use of an oe signal which 
specifies that if oe is high, the output of the counter is driven onto the I/O pins. Otherwise, 
the pin should be driven externally with data to be loaded into the counter. The signal 
count_io is assigned to the signal data for readability purposes only and describes the 
intention of the design. The signal data can be completely replaced with the count_io 
signal, and wherever count_io appears on the right hand side of an equation, it essentially 
is referring to the feedback from the three state buffer from within the I/O pad.

Conceptually, the above VHDL implements the following circuit:

Figure 1-1  8-bit counter using IOPAD for input and output
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38 Warp HDL Reference Manual



VHDL

1
State Machines
VHDL provides constructs that are well-suited for coding state machines. VHDL also 
provides multiple ways to describe state machines. This section will describe some coding 
implementations and how the implementation affects synthesis (the way in which the 
design description is realized in terms of logic and the architectural resources of the target 
device).

The implementation that is chosen during coding may depend on which considerations are 
important: fast time-to-market or squeezing all the possible capacity and performance out 
of a device. Often times, however, choosing one coding style over another will not result 
in much difference and will meet performance and capacity requirements while achieving 
fast time-to-market.

This discussion will include Moore and Mealy state machines, discussing Moore 
machines first. Moore machines are characterized by the outputs changing only with a 
change in state. Moore machines can be implemented in multiple ways:

• Outputs are decoded from state bits combinatorially.

• Outputs are decoded in parallel using output registers.

• Outputs are encoded within the state bits. A state encoding is chosen such that a set of 
the state bits are the required outputs for the given states.

• One-hot encoded. One register is asserted "hot" per state. This encoding scheme often 
reduces the amount of logic required to transition to the next state at the expense of 
more registers. 

• Truth Tables. A truth table maps the current state and inputs to a next state and outputs.

In the following examples, the same state machine is implemented five different ways as a 
Moore machine in order to illustrate the design and synthesis issues. Figure 1-2 shows the 
state diagram.
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Figure 1-2  Moore State machine
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Outputs decoded combinatorially
Figure 1-3 shows a block diagram of an implementation in which the state machine 
outputs are decoded combinatorially. The code follows:

Figure 1-3  Outputs Decoded Combinatorially

library ieee ;
use ieee.std_logic_1164.all ;
entity moore1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore1;

architecture archmoore1 of moore1 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst) 

begin
if rst=’1’ then 

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
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when state0 =>

if id = x"3" then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then 
state <= state0;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= state0;

else
state <= state4;

end if;
end case;

end if;
end process;

--assign state outputs;
y <= "00" when (state=state0) else
     "10" when (state=state1 or state=state3) else
     "11"; 
end archmoore1;

The architecture description begins with a type declaration, called an enumerated type, for 
states which defines five states labeled state0 through state4. A signal, state, is then 
declared to be of type states. This means that the signal called state can take on values of 
state0, state1, state2, state3, or state4.
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The state machine itself is described within a process. The first condition of this process 
defines the asynchronous reset condition which puts the state machine in state0 whenever 
the signal rst is a ’1’. If the rst signal is not a ’1’ and the clock transitions to a ’1’-- elsif 
(clk'event and clk='1') --then the state machine algorithm is sequenced. The design can 
be rising edge triggered, as it is in this example, or falling edge triggered by specifying 
clk=’0’.

On a rising edge of the clock, the case statement (which contains all of the state transitions 
for the Moore machine) is evaluated. The when statements define the state transitions 
which are based on the input ID. For example, in the case when the current state is state0, 
the state machine will transition to state1 if id=x"3", otherwise the state machine will 
remain in state0. In a concurrent statement outside of the process, the output vector y is 
assigned a value based on the current state.

This implementation demonstrates the algorithmic and intuitive fashion which VHDL 
permits in the description of state machines. Simple case... when statements enable the 
user to define the states and their transitions. There are two design and synthesis issues 
with this implementation which some designers may wish to consider: clock-to-out times 
for the combinatorially decoded state machine outputs and an alternative state encoding to 
use minimal product terms. 

The clock-to-out times for the state machine outputs are determined by the time it takes 
for the state bits to be combinatorially decoded. For designs that require minimal clock-to-
out times, an implementation similar to the one above can be used with a design 
modification: a second process could register the outputs after combinatorial decode. This 
would introduce a one clock-cycle latency, however. If this latency is not acceptable, then 
the user will need to choose from the second implementation (outputs decoded in parallel 
registers) or the third implementation (outputs encoded within state bits).

For designs in which the number product terms must be minimized, the user can 
implement a design similar to the on described above, with one exception: rather than 
using the enumerated encoding, the user will want to implement his own encoding 
scheme. The third implementation shows how to do this.
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 Outputs Decoded in Parallel Output Registers
Figure 1-4 shows a block diagram of an implementation using output registers. The state 
machine outputs are determined at the same time as the next state. The code follows.

Figure 1-4  Outputs decoded in parallel

library ieee ;
use ieee.std_logic_1164.all ;
entity moore2 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore2;

architecture archmoore2 of moore2 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst) 

begin
if rst=’1’ then 

state <= state0;
y <= "00";

elsif (clk’event and clk=’1’) then
case state is
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when state0 =>

if id = x"3" then
state <= state1;
y <= "10";

else
state <= state0;
y <= "00";

end if;
when state1 =>

state <= state2;
y <= "11";

when state2 =>
if id = x"7" then

state <= state3;
y <= "10";

else
state <= state2;
y <= "11";

end if;
when state3 =>

if id < x"7" then 
state <= state0;
y <= "00";

elsif id = x"9" then
state <= state4;
y <= "11";

else
state <= state3;
y <= "10";

end if;
when state4 =>

if id = x"b" then
state <= state0;
y <= "00";

else
state <= state4;
y <= "11";

end if;
end case;

end if;
end process;

end archmoore2;

This implementation requires that the user specify--in addition to the state transitions--the 
state machine outputs for every state and every input condition because the outputs must 
be determined in parallel with the next state.
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Assigning the state machine outputs in the synchronous portion of the process causes the 
compiler to infer registers for the output bits. Having output registers rather than decoding 
the outputs combinatorially results in a smaller clock-to-out time. This implementation 
has one design/synthesis issue which some may wish to consider: while this 
implementation achieves a better clock-to-out time for the state machine outputs (as 
compared to the first implementation), it uses more registers (and possibly more product 
terms) than the first implementation. The next implementation (outputs encoded within 
state bits) achieves the fastest clock-to-out times while at the same time using the fewest 
total number of macrocells in a PLD/CPLD.

Outputs Encoded Within State Bits
Table 1-3 and Figure 1-5 show the state encoding table and a block diagram of an 
implementation in which the outputs are encoded within the state registers--the two least 
significant state bits are the outputs. No decoding is required for the outputs, so the output 
signals can be directed from the state registers to output pins. The code follows:

Figure 1-5  Outputs Encoded Within State Bits

Table 1-3  Outputs Encoded Within State Registers

State Output State Encoding

s0 00 000

s1 10 010

s2 11 011

s3 10 110

s4 11 111

Logic

Inputs
Outputs

State
Registers
46 Warp HDL Reference Manual



VHDL

1

library ieee ;
use ieee.std_logic_1164.all ;
entity moore1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end moore1;

architecture archmoore1 of moore1 is
signal state: std_logic_vector(2 downto 0);

-- State assignment is such that 2 LSBs are outputs
constant state0: std_logic_vector(2 downto 0) := "000";
constant state1: std_logic_vector(2 downto 0) := "010";
constant state2: std_logic_vector(2 downto 0) := "011";
constant state3: std_logic_vector(2 downto 0) := "110";
constant state4: std_logic_vector(2 downto 0) := "111";
begin
moore: process (clk, rst) 

begin
if rst=’1’ then 

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
when state0 =>

if id = x"3" then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then 
state <= state0;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
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when state4 =>

if id = x"b" then
state <= state0;

else
state <= state4;

end if;
when others =>

state <= "---";
end case;

end if;
end process;

--assign state outputs (equal to state bits)
y <= state(1 downto 0);
end archmoore1;

A state encoding was chosen for this design so that the last two bits were equivalent to the 
state machine outputs for that state. By using constants, the state machine could be 
encoded and the transitions specified as in the first implementation. The output was 
specified in a concurrent statement. This statement shows that the outputs are a set of the 
state bits. One synthesis issue is highlighted in this example: the use of "when others =>".

"When others" is used when not all possible combinations of a bit sequence have been 
specified in other when clauses. In this, the states "001," "100," and "101" are not defined, 
and no transitions are specified for these states. If when others is not used, then next state 
logic must be synthesized, assuming that if the machine gets in one of these states, then it 
will remain in that state. This has the effect of utilizing more logic (product terms in the 
case of a PLD/CPLD). Supplying a simple "when others" is a quick solution to this design 
issue.

One-Hot-One State Machines
In a one-hot-one state machine, there is one register for each state. Only one register is 
asserted, or "hot," at a time, corresponding to one distinct state. Figure 1-6 shows three 
states of a state machine and how one of the state bits would be implemented. This 
implementation demonstrates that the next state logic is quite simple. The trade-off is the 
number of registers that is required. For example, a state machine with eight states could 
be coded in three registers. The equivalent one-hot coded state machine would require 
eight registers. The code follows.
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Figure 1-6  Implementation of one-hot state machine bits

library ieee ;
use ieee.std_logic_1164.all ;
entity one_hot is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end one_hot;
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architecture archone_hot of one_hot is

type states is (state0, state1, state2, state3, state4);
attribute state_encoding of states:type is one_hot_one;
signal state: states;

begin
machine: process (clk, rst) 

begin
if rst=’1’ then 

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
when state0 =>

if id = x"3" then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then 
state <= state0;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= state0;

else
state <= state4;

end if;
end case;

end if;
end process;
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--assign state outputs;
y <= "00" when (state=state0) else
     "10" when (state=state1 or state=state3) else
     "11"; 
end archone_hot;

This implementation is similar to the first implementation, the only difference being the 
additional attribute which causes the state encoding to use one register for each state.

State Transition Tables
The final Moore implementation of this state machine uses a truth table. The state 
transition table can be found in the VHDL code. The code follows.

library ieee ;
use ieee.std_logic_1164.all ;
entity ttf_fsm is port(

clk, rst:in std_logic;
id: in std_logic_vector(0 to 3);
y: out std_logic_vector(0 to 1));

end ttf_fsm;

use work.table_std.all;
architecture archttf_fsm of ttf_fsm is

signal table_out: std_logic_vector(0 to 4);
signal state: std_logic_vector(0 to 2);

constant state0: std_logic_vector(0 to 2) := "000";
constant state1: std_logic_vector(0 to 2) := "001";
constant state2: std_logic_vector(0 to 2) := "010";
constant state3: std_logic_vector(0 to 2) := "011";
constant state4: std_logic_vector(0 to 2) := "100";

constant table: ttf_table(0 to 21, 0 to 11) := (
-- present state  inputs  nextstate  output
-- -------------  ------  ---------  ------

    state0  &  "--0-" &  state0 &  "00",
    state0  &  "---0" &  state0 &  "00",
    state0  &  "0011" &  state1 &  "10",
    state1  &  "----" &  state2 &  "11",
    state2  &  "1---" &  state2 &  "11",
    state2  &  "-0--" &  state2 &  "11",
    state2  &  "--0-" &  state2 &  "11",
    state2  &  "---0" &  state2 &  "11",
    state2  &  "0111" &  state3 &  "10",
    state3  &  "0111" &  state3 &  "10",
    state3  &  "1000" &  state3 &  "10",
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    state3  &  "11--" &  state3 &  "10",
    state3  &  "101-" &  state3 &  "10",
    state3  &  "0110" &  state0 &  "00",
    state3  &  "010-" &  state0 &  "00",
    state3  &  "00--" &  state0 &  "00",
    state3  &  "1001" &  state4 &  "11",
    state4  &  "0---" &  state3 &  "10",
    state4  &  "100-" &  state3 &  "10",
    state4  &  "11--" &  state4 &  "11",
    state4  &  "1010" &  state4 &  "11",
    state4  &  "1011" &  state0 &  "00");

begin
machine: process (clk, rst) 

begin
if rst =’1’ then 

table_out <= "00000";
elsif (clk’event and clk=’1’) then

table_out <= ttf(table,state & id);
end if;

end process;
state <= table_out(0 to 2);

--assign state outputs;
y <= table_out(3 to 4);
end archttf_fsm;

This implementation uses the ttf function (truth table function) which enables you to 
create a state transition table that lists the inputs, the current state, the next state, and the 
associated outputs. Within the architecture statement, a few signals and constants are 
defined. The signal called table_out is the vector which will contain the output from the 
state table. The signal called state is the state variable itself. Six constants are defined 
which contain the state encoding - state0, state1, state2, state3, and state4, and table - 
which contains the entire state transition table. The table itself is created as an array with a 
certain number of rows designating the number of transitions, and a certain number of 
columns designating the number of input bits, present state bits, next state bits, and output 
bits.

Since the ttf function is not a standard part of VHDL, it has been defined in a separate 
package and provided as part of the Warp software. This package is located in the work 
library and is called table_std. To allow a design to have access to the ttf function, the 
user must add the statement use work.table_std.all; to his VHDL description 
immediately above his architecture definition.
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Most of the work lies in creating the truth table, and the process becomes fairly simple. 
The first portion of the process defines the asynchronous reset. Next, the synchronous 
portion of the process (elsif clk’event and clk=’1’) is defined in which the signal table_out 
is assigned the returned value of the ttf function. The function is called with two 
parameters: the name of the state transition table, and the set of bits which contain the 
inputs and the present state information. The value that is returned is the remainder of the 
columns in the table (total number of columns - second parameter). These bits will contain 
the next state value and the associated outputs. The only task remaining is to split the state 
information from the output information and assign them to the appropriate signal names. 
Both of these assignments must occur outside of the process, otherwise another level of 
registers will be created, as this portion of the process defines synchronous assignments.

This design, as implemented, uses more registers than required but could easily be 
modified. Registers must be created for both the state registers and the output registers, as 
in the second implementation (outputs decoded in parallel). The truth table can be 
modified so that the outputs are encoded in the state bits, as in the third example. Thus, 
rather than specifying both next state values and outputs, the user can simply specify next 
state values in which the outputs are encoded.

Mealy state machines are characterized by the outputs which can change depending on the 
current inputs. This example implements the state machine shown in Figure 1-7, which 
has Moore outputs and one Mealy output. Figure 1-8 shows a block diagram of a Mealy 
machine. The code follows.

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(

clk, rst:in std_logic;
id: in std_logic_vector(3 downto 0);
w: out std_logic;
y: out std_logic_vector(1 downto 0));

end mealy1;
architecture archmealy1 of mealy1 is

type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst) 

begin
if rst=’1’ then 

state <= state0;
elsif (clk’event and clk=’1’) then

case state is
when state0 =>

if id = x"3" then
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state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then 
state <= state0;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= state0;

else
state <= state4;

end if;
end case;

end if;
end process;

--assign moore state outputs;
y <= "00" when (state=state0) else
     "10" when (state=state1 or state=state3) else
     "11"; 
--assign mealy output;
w <= ’0’ when (state=state3 and id < x"7") else
     ’1’;
end archmealy1;
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Figure 1-7  State Diagram for Combination Moore-Mealy State Machine
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Figure 1-8  Block Diagram of Mealy State Machine

This implementation is almost identical to the first Moore implementation. The only 
difference is the additional Mealy output defined at the end of the architecture. The next 
example will examine a Mealy state machine, with all Mealy outputs. 

Figure 1-9 is the state diagram for this new Mealy state machine. Two implementations 
follow.
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Figure 1-9  State Diagram for Second Mealy Machine
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The following implementation specifies the state transitions in a synchronous process and 
the Mealy outputs with a concurrent statement.

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(

clk, rst: in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end mealy1;

architecture archmealy1 of mealy1 is
type states is (state0, state1, state2, state3, state4);
signal state: states;

begin
machine: process (clk, rst)

begin
if rst='1' then

state <= state0;
elsif (clk'event and clk='1') then

case state is
when state0 =>

if id = x"3" then
state <= state1;

else
state <= state0;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then
state <= state0;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= state0;
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else

state <= state4;
end if;

end case;
end if;

end process;

--assign mealy output;
y <= "00" when  ((state=state0 and id /= x"3") or

(state=state3 and id < x"7") or
(state=state4 and id = x"B")) else

"10" when ((state=state0 and id = x"3") or
(state=state2 and id = x"7") or
(state=state3 and (id >= x"7") and 
(id /= x"9"))) else

     "11";
end archmealy1;

This implementation of the Mealy state machine uses a synchronous process in much the 
same way as all of the other examples. An enumerated type is used to define the states. As 
in all but the one_hot coding implementation, the user can choose his own state 
assignment, as in the third Moore implementation. The Mealy outputs in this 
implementation are defined in a concurrent when...else construct. Thus, the output y is a 
function of the current state and the present inputs.

A second implementation of the same state machine follows. This implementation uses 
one synchronous process (in which the next state is captured by the state registers) and one 
combinatorial process in which the state transitions and Mealy outputs are defined.

library ieee ;
use ieee.std_logic_1164.all ;
entity mealy1 is port(

clk, rst: in std_logic;
id: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0));

end mealy1;
architecture archmealy1 of mealy1 is

type states is (state0, state1, state2, state3, state4);
signal state, next_state: states;

begin
st_regs: process (clk, rst)

begin
if rst='1' then

state <= state0;
elsif (clk'event and clk='1') then

state <= next_state;
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end if;

end process;
mealy: process (id)

begin
case state is

when state0 =>
if id = x"3" then

next_state <= state1;
y <= "10";

else
next_state <= state0;
y <= "00";

end if;
when state1 =>

next_state <= state2;
y <= "11";

when state2 =>
if id = x"7" then

next_state <= state3;
y <= "10";

else
 next_state <= state2;
y <= "11";

end if;
when state3 =>

if id < x"7" then
next_state <= state0;
y <= "00";

elsif id = x"9" then
next_state <= state4;
y <= "11";

else
next_state <= state3;
y <= "10";

end if;
when state4 =>

if id = x"b" then
next_state <= state0;
y <= "00";

else
next_state <= state4;
y <= "11";

end if;
end case;

end process;
end archmealy1;
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In this implementation, the first process, st_regs, captures the next state value. The 
second process, mealy, defines the state transitions and the Mealy outputs. This second 
process is not synchronous and is activated each time the signal id transitions. Because the 
second process is not synchronous, the outputs can change even if the state doesn’t, as 
would be expected in a Mealy state machine.

This concludes the discussion of state machines. Additional state machine, counter, and 
logic examples are documented in Section 1.10 Additional Design Examples. The next 
section discusses hierarchical design and addresses the concept of packages. 
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 1.8 Packages

A package can declare components (which are entity and architecture pairs), types, 
constants, or functions as a way to make these items visible in other designs.

The form of a package declaration is as follows:

PACKAGE package_name IS
declarations

END package_name;

Package declarations are typically used in Warp to declare types, constants, and 
components to be used by other VHDL descriptions. Most commonly, the user places a 
package declaration (containing component declarations) at the beginning of a design file 
(before the entity and architecture pair definitions) in order to use the components in a 
subsequent or hierarchical design.

Packages which contain only components do not need a package body. If the user wishes 
to write VHDL functions to be used in multiple designs, however, then these functions 
must be declared in the package declaration as well as defined in a package body:

PACKAGE BODY package_name IS
declarations

END package_name;
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A package body always has the same name as its corresponding package declaration and 
is preceded by the reserved words PACKAGE BODY. A package body contains the 
function bodies whose declarations occur in the package declaration, as well as 
declarations that are not intended to be used by other VHDL descriptions.

The following example shows a package that declares a component named demo, whose 
design (entity and architecture pair) follows the package declaration:

package demo_package is
component demo
port(x:out std_logic; clk, y, z:in std_logic);
end component;

end package;

entity demo is
port(x:out std_logic; clk, y, z:in std_logic);

end demo;

architecture fsm of demo is
.
.
.
end fsm;

If this description were in the file demofile.vhd, the user could analyze the package and 
add it to the current work library with the following commands:

warp -a demofile

Items declared inside a package declaration are not automatically visible to another 
VHDL description. A USE clause within a VHDL description makes items analyzed as 
part of a separate package visible within that VHDL design unit.

USE clauses may take one of three forms:

• USE library_name.package_name;

• USE package_name.object;

• USE library_name.package_name.object;

The portion of the USE clause argument preceding the final period is called the prefix; that 
after the final period is called the suffix.

Some examples of use clauses are:

LIBRARY project_lib;
USE project_lib.special_pkg;
USE project_lib.special_pkg.comp1;
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The LIBRARY statement makes the library project_lib visible within the current VHDL 
design unit. The first USE clause makes a package called "special_pkg" contained within 
library project_lib visible within the current VHDL design unit. The second USE clause 
makes a component called "comp1," contained within "special_pkg," visible within the 
current VHDL design unit.

The suffix of the name in the USE clause may also be the reserved word ALL. The use of 
this reserved word means that all packages within a specified library, or all declarations 
within a specified package, are to be visible within the current VHDL design unit. Some 
examples are:

USE project_lib.all;

This example makes all packages contained within library project_lib visible within the 
current VHDL design unit.

USE project_lib.special_pkg.all;

This example makes all declarations contained within package "special_pkg," itself 
contained within library project_lib, visible within the current VHDL design unit.

Note the important difference between these two USE clauses:

USE project_lib.special_pkg;

USE project_lib.special_pkg.all;

The first USE clause just makes the package named special_pkg within library project_lib 
visible within the current VHDL design unit. While the package name may be visible, 
however, its contents are not. The second USE clause makes all contents of package 
special_pkg visible to the current VHDL design unit.

Example:

The following code defines a four bit counter:

library ieee ;
use ieee.std_logic_1164.all ;
package counter_pkg is
        subtype nibble is std_logic_vector(3 downto 0);
        component upcnt port(
                clk:    in std_logic;
                count:  buffer nibble);
        end component;
end counter_pkg;

library ieee ;
use ieee.std_logic_1164.all ; -- Defines std_logic
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use work.std_arith.all; -- Defines "+"
use work.counter_pkg.all; -- My package

entity upcnt is port(
        clk: in std_logic;
        count: buffer nibble);
end upcnt;

architecture archupcnt of upcnt is
begin
counter:process (clk)
        begin
                if (clk'event and clk='1') then
                        count <= count + 1;
                end if;
        end process counter;
end archupcnt;

The package declaration allows the user to use the upcnt component and the type nibble 
in other designs. For example, suppose the user needed five of these counters but did not 
want to write five separate process. They might prefer to simply instantiate the upcnt 
counter defined above in a new design, creating a level of hierarchy. The code follows.

use work.counter_pkg.all;

entity counters is port(
        clk1, clk2:             in std_logic;
        acnt, bcnt, ccnt:       buffer nibble;

deqe:  out std_logic);
end counters;

architecture archcounters of counters is
signal dcnt, ecnt: nibble;
begin
counter1: upcnt port map (clk1, acnt);
counter2: upcnt port map (clk2, bcnt);
counter3: upcnt port map (clk => clk1, count => ccnt);
counter4: upcnt port map (clk2, dcnt);
counter5: upcnt port map (count => ecnt, clk => clk2);
deqe <= ’1’ when (dcnt = ecnt) else ’0’;
end archcounters;
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The initial USE clause makes the counter_pkg available to this design. Counter_pkg is 
required for the nibble definition used in the entity and the upcnt component used in the 
architecture. Five counters are then instantiated by using the port map to associate the 
component I/O with the appropriate entity ports or architecture signals. Three of the 
instantiations use positional association in which the position of the signals in the port 
map determines which I/O of the component the signal is associated with. In counter3 and 
counter5, named association is used to explicitly define the signal to component I/O 
connections. In named association, the order of the signal assignment is not important.

When using Warp to compile and synthesize the counters design, the design file that 
contains upcnt must be compiled first, before counters can be compiled and synthesized. 
This is because the contents of the counter_pkg must first be added to the work library. 
Therefore, when selecting (in Galaxy) the Warp input files to be compiled and 
synthesized, select the upcnt design as the first file and the counters design as the second. 
This will ensure that upcnt is compiled first. Once the upcnt design has been added to the 
current work library, the design does not need to recompile it when synthesizing the top-
level design unless the user makes changes to it or target the design to a different device.

1.8.1 Predefined Packages
Special purpose packages are provided with the Warp compiler to simplify description 
and synthesis of frequently used and useful structures and operations not native to VHDL. 
Additionally the math packages also contain very highly tuned designs for datapath 
components used during operator inferencing.

The following packages are supplied standard with the Warp compiler. Synthesis versions 
of these packages are found in c:\warp\lib\common. Original versions of these packages 
are in c:\warp\lib\prim\presynth and are likely to be more readable than the synthesis 
versions.
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Table 1-4  Package Name and Purpose

Package Purpose

std_logic_1164 This package defines the IEEE 1164 specification for std_logic.

std_arith/bit_arith
These two packages define math operations for 
std_logic_vectors and bit_vectors. They support vector-vector 
operations as well as vector, integer, integer-vector operations.

int_arith
For designs using integer signals, VHDL predefines operations 
for integers. However, using this package in the design will give 
the user hand tuned implementations for datapath operators.

numeric_bit / 
numeric_std

These two packages implement the upcoming IEEE standard for 
numeric operations. They are similar to ’std_arith’ and 
’bit_arith’. According to the standard, these packages support 
SIGNED and UNSIGNED operations. 

table_std This package provides a state transition table format for descrip-
tion of state machines.

rtlpkg This package provides a set of simple logic functions useful for 
creation hierarchical structural VHDL design files.

math34x8_pkg

This package defines 8-bit arithmetic components for use in 
designs targeted to the MAX340 family CPLDs implemented 
using MAX340 architecture primitive elements.The 
math34x12_pkg, math34x16_pkg, and math34x24_pkg pack-
ages provide similar arithmetic components of widths 12, 16, 
and 24 respectively.

std_logic_arith/
std_logic_signed/
std_logic_unsigned

These three packages implement the Synopsys libraries for 
Standard Logic Arithmetic, Standard Logic Signed and Standard 
Logic Unsigned. Enables the user to access many of the 
arithmetic operators for use with many VHDL standard types.
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The USE statement is required in a design file to make the package "visible" to the design 
file. The USE statement should immediately precede the entity and architecture pair and 
appear as follows:

USE work.package_name.all; 
where package_name refers to one of the package names listed above. In a file defines 
more than one entity and architecture pair, the necessary USE clauses for each of the 
architectures have to be listed specifically. This means that the scope of the USE clause is 
limited to one entity/architecture pair.

Package Contents and Usage of std_arith, bit_arith, numeric_std and 
numeric_bit.
These packages contain functions which allow arithmetic operations on vectors. VHDL is 
a strongly typed language which does not recognize the arbitrary data types as types 
compatible with arithmetic manipulation. These packages contain functions which when 
invoked in the design file allow arithmetic operations on vectors.

Several of the functions in this package are implemented by "overloading" the native 
VHDL operators for arithmetic operations on vectors and integers. Overloading is a 
scheme by which one or more functions can be called by use of the same conventional 
arithmetic operator symbol. The compiler will call the correct function by determining the 
data types of the arguments of the function call. Multiple functions can be represented by 
the same symbol as long as no two functions accept the same combination of argument 
data types. This means the "+" sign can be used, for example, to call a vector addition 
routine since the data type of the arguments (both of type bit_vector) will signal that "+" 
should call the bit_vector addition function.

The contents of all of these packages contain identical support for all arithmetic 
operations. The main difference between each of these packages is the type of vector that 
they support. The package needed in the design depends on what kind of vectors are in the 
design. Table 1-5 illustrates the type support by these packages and the necessary use 
clauses.
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In Table 1-5, the VHDL definition for the vector type each of these packages support is as 
follows:

TYPE <Vector> is ARRAY ( NATURAL RANGE <> ) of <Base> ;
Where <Vector> is the name of the vector and the <Base> is the name of the type of the 
elements of the vector.

Note – Even though these packages support Vector to Integer opera-
tions, Warp implementations allow the Integers to be Integer constants 
only. This means that these packages do not support operations between 
Vectors and Integers where both of the operands are signals.

The common convention followed in all of these packages is that the left most bit is the 
MSB (most significant bit) regardless of the direction of the vector.

The following describes each of the operators supported. The conventions here use:

"a" and "b" for vector signals

"i" for integer constants

.op. for operators.

Table 1-5  Use Clause Needed for Each Package

Package Vector Base USE clause(s)

std_arith std_logic_vector std_logic
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

bit_arith bit_vector bit use work.bit_arith.all;

numeric_std unsigned, signed std_logic
library ieee;
use ieee.std_logic_1164.all;
use work.numeric_std.all;

numeric_bit unsigned, signed bit use work.numeric_bit.all;

std_logic_arith signed, unsigned std_ulogic use synopsys.std_logic_arith.all;

std_logic_signed std_logic_vector std_logic use synopsys.std_logic_signed.all;

std_logic_unsigned std_logic_vector std_logic use synopsys.std_logic_unsigned.all;
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Support is provided for addition, multiplication, relational, shift and boolean operators.

Addition Operators ( +, - )

(a .op. b) Operands are both vectors. The resultant vector is the size of the larger of the 
two vectors.

(a .op. i) (i .op. a)
One operand is a vector and the other an integer constant. The resulant 
vector is the size of "a". Integers larger than "a" lose their MSBs.

Multiplication Operators ( * )

(a .op. b) Operands are both vectors. The resultant vector is the sum of the sizes of the 
two vectors.

(a .op. i) (i .op. a)
One operand is a vector and the other an integer constant. The resulant 
vector is twice the size of "a". Integers larger than "a" lose their MSBs.

Relational Operators ( =, /=, <=, >=, <, > )

(a .op. b) Operands are both vectors. The resultant is of type boolean.

(a .op. i) (i .op. a)
One operand is a vector; the other, an integer constant. The result is of type 
boolean. The current implementations require that the number of bits 
required to represent "i" be less than or equal to "a"s size.

Shift Operators (sll, srl, sla, sra, ror, rol)

(a .op. i) For the shift operators, the second operand must be an integer constant.

Boolean Operators (ALL)

(a .op. b) All boolean operators are supported. For binary operators, the length of the 
two vectors has to be the same.
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Miscellaneous Functions
std_match (a, "string")

This function is provided in the numeric_std and std_arith packages only.

This function can be used to compare a vector to a string containing ’0’, ’1’ 
and ’-’. Normally in VHDL, if a is compared to "00-", where the intention is 
not to compare the LSB, the result will always be false unless a(0) is really 
set to the value ’-’. In synthesis, this will always evaluate to false. To avoid 
this problem, the std_match function is provided. The size of the string has 
to match the size of the vector.

Usage:
if (std_match(a, "10-11")) then
x <= ’1’ ;

resize (a, size)

This function resizes an array (a) to size ’size’, padding with ’0’s if 
necessary.

to_unsigned (i,s)

This function is provided in the numeric_std and the numeric_bit packages 
only.

The argument is an integer that is to be converted, and the size of the 
resultant vector and the result is an unsigned vector of size "s".

to_std_logic_vector(i,s)

This function is provided in the std_arith package only.

The argument is an integer that is to be converted, and the size of the 
resultant vector and the result is an std_logic vector of size "s".

to_bit_vector (i,s)

This function is provided in the bit_arith package only.

The argument is an integer that is to be converted, and the size of the 
resultant vector and the result is an bit_vector of size "s".

to_integer (a)

This function is provided in all the packages and is given a vector, returns an 
integer.
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 Package Contents and Usage of int_arith
The int_arith package should be used when both operands of an operator are integer 
signals. If this package is not used, the design will not produce the best results even 
though the results will be logically correct. Without this package, the design will use the 
VHDL language’s implementations. If this package is included, it overloads all the 
operators and provides tuned implementations for the datapath operators.

Package Contents and Usage of bv_math
This package will be omitted in the next release and is provided in this release only for 
compatibility purposes. This package should be substituted by one of the above packages. 
There is one important difference, however, between this package and the arithmetic 
packages described previously. In this package, the highest index is considered the most 
significant bit. 

The operators for which functions are provided are:

inc_bv(a) increment bit_vector a. If function is assigned to a signal within a clocked 
process, the synthesized result will be an up counter. Equivalent to a <= a + 
1;

Usage: a <= inc_bv(a);

dec_bv(a) decrement a bit_vector a. If function is assigned to a signal within a clocked 
process, the synthesized result will be a down counter. Equivalent to a <= a - 
1;.

Usage: a <= dec_bv(a);

+(a; b) regular addition function for two bit_vectors a and b. The "+" operator 
overloads the existing "+" operator for definition of arithmetic operations on 
integers. The output vector is the same length as the input vector, so that 
there is no carry output. If a carry out is required, the user should increase 
the length of the input vectors and use the MSB as the carry out.

Usage for two vectors of length 8 with carry out: 
signal a: bit_vector(0 to 8);
signal b: bit_vector(0 to 8);
signal q: bit_vector(0 to 8);
q <= a + b;
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+(a; b) regular addition function for adding to bit_vector a the object b of type bit. 

This is the equivalent of a conditional incrementing of bit_vector a. The "+" 
operator overloads the existing "+" operator for definition for arithmetic 
operations on integers. The output vector is the same length as the input 
vector so there is no carry output. If a carry out is required the user should 
increase the length of the input vector and use the MSB as the carry out.

Usage for 16 bit_vector with no carry out:
signal a: bit_vector(0 to 15);
signal b: bit;
signal q: bit_vector(0 to 15);
q <= a + b; 

-(a; b) regular subtraction function for two bit_vectors. The "-" operator overloads 
the existing "-" operator definition for arithmetic operations on integers.

Usage: 
signal a: bit_vector(0 to 7);
signal b: bit_vector(0 to 7);
signal q: bit_vector(0 to 7);
q <= a - b;

-(a; b) regular subtraction function for subtracting from bit_vector a the object b of 
type bit. This is equivalent to the conditional decrementing of only 
bit_vector a. The "-" operator overloads the existing "-" operator definition 
for arithmetic operations on integers.

Usage: 
signal a: bit_vector(0 to 7);
signal b: bit;
signal q: bit_vector(0 to 7);
q <= a - b;

inv(b) unary invert function for object b of type bit. For use in port maps and 
sequential assignments. 

Usage: 
signal b: bit;
signal z: bit; 
z <= inv(b);
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inv(a) invert function which inverts each bit of bit_vector a and returns resulting 

bit_vector.

Usage: 
signal a: bit_vector(0 to 15);
signal q: bit_vector(0 to 15);
q <= inv(a);

Package Contents and Usage of int_math
This package is being provided only for compatibility purposes.

This package contains functions which allow mixed arithmetic operations on bit_vectors 
and integers. 

VHDL is a strongly typed language which does not recognize the bit data type as a type 
compatible with arithmetic manipulation. This package contains functions, which when 
invoked in the design file, allow arithmetic operations which mix integers and bit_vectors.

Several of the functions in this package are implemented by "overloading" the native 
VHDL operators for arithmetic operations on integers. Overloading is a scheme by which 
one or more functions can be called by use of the same conventional arithmetic operator 
symbol. The compiler will call the correct function by noting the data types of the 
arguments of the function call. Multiple functions can be represented by the same symbol 
as long as no two functions accept the same combination of argument data types. This 
means the "+" sign can be used, for example, to call a routine for adding mixed data types 
(bit_vector and integer) since the data type of the arguments will signal that "+" should 
call the package function for mixed addition rather than the native function for integer 
addition. The operators for which functions are provided are:

bv2i(a) converts bit_vector a to an integer.

Usage: 
variable z: integer range 0 to 15;
signal a: bit_vector(0 to 3);
z := bv2i(a);

i2bv(i; w) converts integer i to binary equivalent and expresses as a bit_vector of length 
w.

Usage: 
variable i: integer range 0 to 31;
signal a: bit_vector(0 to 4);
a <= i2bv(i, 5);
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i2bvd(i; w) converts integer i to a binary coded decimal bit_vector of length w.

Usage: 
variable i: integer range 0 to 31;
signal a: bit_vector(0 to 7);
a <= i2bv(i, 8);

=(a; b) converts bit_vector a to integer and checks for equality with integer b. 
Returns boolean value true if equal, false if not equal. Overloads native 
operator for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 15);
variable b: range 0 to 64;
variable z: boolean;
z := (a = b);

/=(a; b) converts bit_vector a to integer and checks for equality with integer b. 
Returns boolean value true if not equal, false if equal.Overloads native 
operator for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
variable z: boolean;
z := (a /= b);

>(a; b) converts bit_vector a to integer and compares with integer b. If a is > b, 
returns boolean value true, otherwise returns false. Overloads native 
operator for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
variable z: boolean;
z := (a > b);

<(a; b) converts bit_vector a to integer and compares with integer b. If a is < b, 
returns boolean value true, otherwise returns false. Overloads native 
operator for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
variable z: boolean;
z:= (a < b);
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>=(a; b) converts bit_vector a to integer and compares with integer b. If a is >= b, 

returns boolean value true, otherwise returns false. Overloads native 
operator for integer arithmetic.

Usage:
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
variable z: boolean;
z:= (a >= b);

<=(a; b) converts bit_vector a to integer and compares with integer b. If a is <= b, 
returns boolean value true, otherwise returns false. Overloads native 
operator for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 3);
variable b: range 0 to 128;
variable z: boolean;
z:= (a <= b);

+(a; b) increments bit_vector a the number of times indicated by the value of integer 
b and returns bit_vector result. Implemented by conversion of integer b to 
bit_vector and adding to bit_vector a. Overloads native operator for integer 
arithmetic.

Usage:
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
signal z: bit_vector(0 to 15);
z <= a + b;

-(a; b) decrements bit_vector a the number of times indicated by the value of 
integer b and returns bit_vector result. Implemented by conversion of integer 
b to bit_vector and subtracting from bit_vector a. Overloads native operator 
for integer arithmetic.

Usage: 
signal a: bit_vector(0 to 15);
variable b: range 0 to 128;
signal z: bit_vector(0 to 15);
z <= a - b;
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Package Contents and Usage of table_std
The table_std package describes a truth table function, ttf, which can be used to 
implement state transiting tables or other truth tables. A description and example of the ttf 
function can be found in Section 1.7.3 Design Methodologies.

Package Contents and Usage of rtlpkg
The package rtlpkg contains VHDL component declarations for basic VHDL components 
which can be used to construct structural design files of more complex logic circuits. 
These components are useful for controlling implementation of the design by the Warp 
compiler to ensure that specific performance or architecture choices are preserved in the 
final synthesized design. These components are generic components which can be used to 
describe retargetable designs, which can be synthesized and fit to any desired Cypress 
device. The compiler makes the appropriate synthesis choices based on the target device's 
architectural resources to achieve the best possible utilization of the device. By preserving 
the specified interconnection of the declared components, the compiler maintains the 
specific circuit implementation intended by the designer.

Components contained in the package rtlpkg are:

Name Function
bufoe bidirectional I/O with three state output driver y with type bit feedback to 

logic array (yfb)
dlatch transparent latch with active low latch enable (e) (transparent high)
dff positive edge triggered D-Type flip flop
xdff positive edge triggered D-Type flip flop with XOR of two inputs (x1 & x2) 

feeding D input
jkff positive edge triggered jk flip flop
buf signal buffer to represent a signal not to be removed during synthesis to 

enable visibility during simulation and to create a manual factoring point
srl set/reset latch with reset dominant, set and reset active high
srff positive edge triggered set/reset flip flop, reset dominant, set and reset active 

high
dsrff positive edge triggered D-Type flip flop without asynchronous set and reset, 

reset dominant, set and reset active high
tff toggle flip flop
xbuf two input exclusive OR gate
triout three state buffer with active high output enable input
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 Package Contents and Usage of math34x8_pkg
The packages math34x8_pkg, math34x12_pkg, math34x16_pkg, and math34x24_pkg 
contain VHDL component declarations for optimal arithmetic components to be 
implemented in the MAX340 family of devices. These components are useful for 
controlling implementation of arithmetic functions by the Warp compiler to ensure that 
specific performance or architecture choices are preserved in the final synthesized design. 
There are four packages containing components that are functionally the same but operate 
on signals of different widths. The usage for these components is the same. These 
packages are only available with the 3.5 library. The components included in the 
math34x8_pkg are as follows:

Name Function
add_8 eight-bit adder
sub_8 eight-bit subtracter
gt_8 eight-bit greater than comparator
lt_8 eight-bit less than comparator
ge_8 eight-bit greater than or equal to comparator
le_8 eight-bit less than or equal to comparator
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1.9 Libraries

If all information about a design description had to appear in one file, many VHDL files 
would be huge and cumbersome, and information re-use would be impossible. 
Fortunately, VHDL allows the user to share information between files by means of two 
constructs: libraries and packages.

In VHDL, a library is a collection of previously analyzed design elements (packages, 
components, entities, architectures) that can be referenced by other VHDL descriptions. In 
Warp, a library is implemented as a directory, containing one or more VHDL files and an 
index to the design elements they contain.

Note – In VHDL, analysis is the examination of a VHDL description to 
guarantee compliance with VHDL syntax, and the extraction of design 
elements (packages, components, entities, architectures) from that 
description. Synthesis is the production of a file (to be written onto a 
physical chip) that embodies the design elements extracted from the 
VHDL descriptions by analysis.

To make the contents of a library accessible to a VHDL description, use a library clause. A 
library clause takes the form:

LIBRARY library_name [, library name...];
For example, the statement 

LIBRARY gates, my_lib;
makes the contents of two libraries called gates and my_lib accessible in the VHDL 
description in which the library clause is contained.

Library clauses are seldom needed in Warp VHDL descriptions. This is because all VHDL 
implementations include a special library, named work. Work is the symbolic name given 
to the current working library during analysis. The results of analyzing a VHDL 
description are placed by default into the work library for use by other analyses. (In other 
words, a library clause is not necessary to make the work library accessible).

1.9.1 Synopsys Library Support
There are three additional libraries to provide compatibility with designs targeted for 
Synopsys.  These libraries are Standard Logic Arithmetic, Standard Logic Signed, and 
Standard Logic Unsigned.
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Both Standard Logic Signed and Standard Logic Unsigned will be fully supported. The 
Standard Logic Arithmetic library will support all functions that return signed or unsigned 
values along with those that return boolean values.  Those functions that return 
std_logic_vector values are not supported.

To enable the use of these packages in a design, the user must include the appropriate 
"use" clauses:

Standard Logic Arithmetic       use ieee.std_logic_arith.all;

Standard Logic Signed             use ieee.std_logic_signed.all;

Standard Logic Unsigned         use ieee.std_logic_unsigned.all;

The inclusion of these libraries enables the user to access many of the arithmetic operators 
(e.g. "+", "-", "*", "<", ">", ">=", "<=", "=", "/=") for use with many of the VHDL 
standard types.

The Synopsys compatible libraries can be used in place of the earlier libraries supplied 
with Warp.
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1.10 Additional Design Examples

Many examples demonstrating design methodologies can be found in Section 1.7.3 
Design Methodologies. Most of these examples can be found in the c:\warp\examples 
directory. This section provides a discussion for additional design examples found in the 
c:\warp\examples directory but not discussed earlier in this chapter. These designs 
include:

Logic
• DEC24: a two-to-four bit decoder.

• PINS: shows how to use the part_name and pin_numbers attributes to map signals to 
pins.

• NAND2_TS: a two-input NAND gate with three-state output.

Counters
• CNT4_EXP: Four bit counter with synchronous reset. The counter uses expressions 

for clocks and resets. 

• CNT4_REC: Four bit counter with load on the bidirectional pins. Demonstrates use of 
a record.

State Machines
• DRINK: a behavioral description of a mythical drink machine (the drinks only cost 30 

cents!).

• TRAFFIC: a traffic-light controller. 

• SECURITY: a simple security system.

1.10.1 DEC24
This example demonstrates a two-to-four decoder.

library ieee ;
use ieee.std_logic_1164.all ;

-- two to four demultiplexer/decoder

ENTITY demux2_4 IS
PORT(in0, in1: IN std_logic;
 d0, d1, d2, d3: OUT std_logic);

END demux2_4;
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ARCHITECTURE behavior OF demux2_4 IS
BEGIN

d0 <= (NOT(in1) AND NOT(in0));
d1 <= (NOT(in1) AND in0);
d2 <= (in1 AND NOT(in0));
d3 <= (in1 AND in0);

END behavior;

The entity declaration specifies two input ports, in0 and in1, and four output ports, d0, 
d1, d2, and d3, all of type std_logic.

The architecture specifies the various ways that the two inputs are combined to determine 
the outputs. This is one of several ways that a two-to-four decoder can be implemented.

1.10.2 PINS
This example shows how to use the part_name and pin_numbers attributes to map 
signals to pins.

library ieee ;
use ieee.std_logic_1164.all ;

--Signals that are not assigned to pins can be automatically
--assigned pins by Warp. This design uses the C22V10-25DMB.
ENTITY and5Gate IS

PORT (a: IN std_logic_vector(0 TO 4);
 f: OUT std_logic);

ATTRIBUTE part_name of and5Gate:ENTITY IS "C22V10";
ATTRIBUTE pin_numbers of and5Gate:ENTITY IS

 "a(0):2 a(1):3 " --The spaces after 3 and 5 are necessary
 & "a(2):4 a(3):5 " --for concatenation (& operator)
 & "f:23";  --signal a(4) will be assigned a pin by warp

END and5Gate;

ARCHITECTURE see OF and5Gate IS
BEGIN

f <= a(0) AND a(1) AND a(2) AND a(3) AND a(4);
END see;

Of particular importance in this example is the space just before the closing right-quote of 
each portion of the attribute value to be concatenated. As shown, this value resolves to

a(0):2 a(1):3 a(2):4 a(3):5 f:23

Had the spaces not been included, this value would have been

a(0):2 a(1):3a(0):4 a(1):5f:23
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which is an unrecognizable string.

1.10.3 NAND2_TS
This example is a two-input NAND gate with three-state output.

library ieee ;
use ieee.std_logic_1164.all ;

--Two input NAND gate with three-state output
--This design is DEVICE DEPENDENT.

USE work.rtlpkg.all; --needed for triout

ENTITY threeStateNand2 IS
PORT (a, b, outen: IN std_logic;

c: INOUT std_logic);
END threeStateNand2;

ARCHITECTURE show OF threeStateNand2 IS
SIGNAL temp: std_logic;

BEGIN
temp <= a NAND b;
tri1: triout PORT MAP (temp, outen, c);

END show;

This design is implemented by instantiating one triout component from rtlpkg. Temp is a 
signal created to be the input to the three-state buffer. Outen is the output enable, and c is 
the output (the NAND of signals a and b).

1.10.4 CNT4_EXP
This example is a counter that uses expressions for clocks and resets.

-- Fits to a c344

library ieee ;
use ieee.std_logic_1164.all ;
USE work.std_arith.all;

ENTITY testExpressions IS
PORT (clk1, clk2, res1, res2, in1, in2: IN std_logic;

 count: BUFFER std_logic_vector(0 TO 3));
END testExpressions;

ARCHITECTURE cool OF testExpressions IS
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SIGNAL clk, reset: std_logic;

BEGIN
clk <= clk1 AND clk2; --both clocks must be asserted;
reset <= res1 OR res2; --either reset

proc1:PROCESS 
BEGIN
WAIT UNTIL clk = ’1’;

IF reset = ’1’ THEN
count <= x"0";

ELSE 
count <= count + 1 ;

END IF;
END PROCESS;

END cool;

The entity declaration specifies two clock signals and two reset signals as external 
interfaces, as well as two input data ports and a four-bit_vector for output.

The architecture declares two new signals, clk and reset, which are later defined to be the 
AND of clk1 and clk2 and the OR of reset1 and reset2, respectively. Both clocks must 
be asserted to detect a clock pulse and trigger the execution of the process. If either reset is 
asserted when a clock pulse is detected, the counter resets itself, else it increments by one 
and waits for the next clock pulse.

1.10.5 CNT4_REC
This example uses a record with a four bit counter with load on the bidirectional pins.

library ieee ;
use ieee.std_logic_1164.all ;
USE work.std_arith.all;
-- loads on the i/o pins
-- temp is a RECORD used to simplify instantiating bufoe
USE work.rtlpkg.all;
ENTITY counter IS 

PORT (clk, reset, load, outen: IN std_logic;
count: INOUT std_logic_vector(0 TO 3));

END counter;
ARCHITECTURE behavior OF counter IS
TYPE bufRec IS -- record for bufoe

RECORD -- inputs and feedback
cnt: std_logic_vector(0 TO 3);
dat: std_logic_vector(0 TO 3);

END RECORD;
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SIGNAL temp: bufRec;
CONSTANT counterSize: INTEGER:= 3;
BEGIN
g1: FOR i IN 0 TO counterSize GENERATE

bx: bufoe PORT MAP(temp.cnt(i), outen, count(i), temp.dat(i));
END GENERATE;

proc1:PROCESS
 BEGIN

WAIT UNTIL (clk = ’1’);
 IF reset = ’1’ THEN

temp.cnt <= "0000";
ELSIF load = ’1’ THEN

temp.cnt <= temp.dat;
ELSE

temp.cnt <= temp.cnt + 1; -- increment vector
END IF;

END process;
END behavior;

The entity declaration specifies that the design has four input bits (clk, reset, load, and 
outen) and a four-bit_vector for output.

The architecture implements a counter with synchronous reset and load, and also 
demonstrates the use of RECORD types. 

1.10.6 Drink
This example a behavioral description of a mythical drink dispensing machine (the drinks 
only cost 30 cents!):

library ieee ;
use ieee.std_logic_1164.all ;

--In keeping with the fact that this is a mythical drink
--machine, the cost of the drink is 30 cents!

entity drink is port (
nickel,dime,quarter,clock : in std_logic;
returnDime,returnNickel,giveDrink: out std_logic); 

end drink;

architecture fsm of drink is
type drinkState is (zero,five,ten,fifteen,twenty,twentyfive,owedime); 
signal drinkStatus: drinkState;

begin
process begin
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wait until clock = ’1’;
-- set up default values
giveDrink <= ’0’; 
returnDime <= ’0’; 
returnNickel <= ’0’;
case drinkStatus is

when zero =>
IF (nickel = ’1’) then 

drinkStatus <= Five; 
elsif (dime = ’1’) then

drinkStatus <= Ten; 
elsif (quarter = ’1’) then

drinkStatus <= TwentyFive; 
end if;

when Five =>
IF (nickel = ’1’) then

drinkStatus <= Ten; 
elsif (dime = ’1’) then

drinkStatus <= Fifteen; 
elsif (quarter = ’1’) then

giveDrink <= ’1’; 
drinkStatus <= zero;

end if; 
when Ten =>

IF (nickel = ’1’) then
drinkStatus <= Fifteen; 

elsif (dime = ’1’) then
drinkStatus <= Twenty; 

elsif (quarter = ’1’) then
giveDrink <= ’1’; 
returnNickel <= ’1’; 
drinkStatus <= zero;

end if; 
when Fifteen =>

IF (nickel = ’1’) then
drinkStatus <= Twenty; 

elsif (dime = ’1’) then
drinkStatus <= TwentyFive; 

elsif (quarter = ’1’) then
giveDrink <= ’1’; 
returnDime <= ’1’; 
drinkStatus <= zero;

end if; 
when Twenty =>

IF (nickel = ’1’) then
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drinkStatus <= TwentyFive; 

elsif (dime = ’1’) then
giveDrink <= ’1’; 
drinkStatus <= zero;

elsif (quarter = ’1’) then
giveDrink <= ’1’; 
returnNickel <= ’1’; 
returnDime <= ’1’; 
drinkStatus <= zero;

end if; 
when TwentyFive =>

IF (nickel = ’1’) then
giveDrink <= ’1’; 
drinkStatus <= zero;

elsif (dime = ’1’) then
returnNickel <= ’1’; 
giveDrink <= ’1’; 
drinkStatus <= zero;

elsif (quarter = ’1’) then
giveDrink <= ’1’; 
returnDime <= ’1’; 
drinkStatus <= oweDime;

end if;
when oweDime =>

returnDime <= ’1’; 
drinkStatus <= zero;

-- The following WHEN makes sure that the state machine
-- resets itself if it somehow gets into an undefined state.

when others => 
drinkStatus <= zero; 

end case;
end process;

end fsm;

The entity declaration specifies that the design has four inputs: nickel, dime, quarter, and 
clock. The outputs are giveDrink, returnNickel, and returnDime. The last two outputs 
tell the design when to give change after the 30-cent price of the drink has been satisfied.

The architecture then defines an enumerated type with one value for each possible state of 
the machine, i.e., each possible amount of money deposited. Thus, the initial state of the 
machine is zero, while other states include five, ten, fifteen, etc.

After some initialization statements, the major part of the architecture consists of a large 
case statement, containing a when clause for each possible state of the machine. Each 
when clause contains an if...then...elsif statement to handle each possible input and change 
of state.
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 1.10.7 Traffic
This example is a traffic-light controller.

library ieee ;
use ieee.std_logic_1164.all ;

-- This state machine implements a simple traffic light.
-- The N - S light is usually green, and remains green
-- for a minimum of five clocks after being red. If a 
-- car is travelling E-W, the E-W light turns green for
-- only one clock.

ENTITY traffic_light IS 
PORT(clk, car: IN std_logic;--car is E-W travelling
 lights: BUFFER std_logic_vector(0 TO 5));

END traffic_light;

ARCHITECTURE moore1 OF traffic_light IS
-- The lights (outputs) are encoded in the following states.
-- For example, the
-- state green_red indicates the N-S light is green and the
-- E-W light is red.
-- "001" indicates green light, "010" yellow, "100" red; 
-- "&" concatenates

CONSTANT green_red : std_logic_vector(0 TO 5) := "001" & "100";
CONSTANT yellow_red : std_logic_vector(0 TO 5) := "010" & "100";
CONSTANT red_green : std_logic_vector(0 TO 5) := "100" & "001";
CONSTANT red_yellow : std_logic_vector(0 TO 5) := "100" & "010";

-- nscount to verify five consecutive N-S greens
SIGNAL nscount: INTEGER RANGE 0 TO 5; 

BEGIN
PROCESS
BEGIN

WAIT UNTIL clk = ’1’;
CASE lights IS

WHEN green_red =>
IF nscount < 5 THEN 

lights <= green_red;
nscount <= nscount + 1;

ELSIF car = ’1’ THEN 
lights <= yellow_red;
nscount <= 0;

ELSE
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lights <= green_red;

END IF;
WHEN yellow_red =>

lights <= red_green;
WHEN red_green =>

lights <= red_yellow;
WHEN red_yellow =>

lights <= green_red;
WHEN others =>

lights <= green_red;
END CASE;

END PROCESS;
END moore1;

The states in this example are defined such that the outputs are encoded in the state, using 
red/yellow/green triplets for each of the north-south and east-west light. For example, if 
the north-south light is red and the east-west light is green, then the state encoding is 
"100001".

In this design, the north-south light remains green for a minimum of five clock cycles, 
while the east-west light only remains green for one clock cycle. Note the use of signal 
nscount to keep track of the number of clock cycles the north-south light has remained 
green. This is less confusing than creating five extra states that do basically nothing.

1.10.8 Security
This example is a simple security system.

ENTITY securitySystem IS
PORT (set, intruder, clk: IN std_logic;

horn: OUT std_logic);
END securitySystem;

ARCHITECTURE behavior OF securitySystem IS
TYPE states IS (securityOff, securityOn, securityBreach);
SIGNAL state, nextState: states;

BEGIN
PROC1:PROCESS (set, intruder)

BEGIN
CASE state IS
WHEN securityOff =>

IF set = ’1’ THEN
nextState <= securityOn;

END IF;
WHEN securityOn =>
Warp HDL Reference Manual 89



VHDL

1

IF intruder = ’1’ THEN

horn <= ’1’; --Mealy output
nextState <= securityBreach;

ELSIF set = ’0’ THEN
horn <= ’0’;
nextState <= securityOff;

END IF;
WHEN securityBreach =>

IF set = ’0’ THEN
horn <= ’0’;
nextState <= securityOff;

END IF;
WHEN others =>

nextState <= securityOff;
END CASE;

END PROCESS;
proc2:PROCESS

BEGIN
WAIT UNTIL clk =’1’;
state <= nextState;

END PROCESS;
END behavior;

The entity declaration specifies that the design has three inputs (set, intruder, and clk) 
and one output (horn), all of type std_logic.

The architecture declares an enumerated type with three possible values: securityOn, 
securityOff, and securityBreach. It also declares two state variables, named state and 
nxtState.

The rest of the architecture defines two concurrent processes that interact via the 
nextState signal. The first process is activated whenever a change occurs in the set or 
intruder signals, and defines what the new state of the machine will be as of the next clock 
signal. The second is activated with each rising clock pulse.
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1.11 Alphabetical Listing of VHDL Constructs

The following sections provide an encyclopedic reference to each VHDL language 
element that Warp supports.

Each section shows the syntax of each language element, explains the purpose of the 
language element, and gives an example of its use.

1.11.1 Alias
ALIAS allows the user to define an alternate name by which to reference a VHDL object. 
Use ALIAS to create a shorter reference to a long object name, or to provide a mnemonic 
reference to a name that may be difficult to remember otherwise.

alias identifier[:subtype_indication] is name;
Identifier is the alias for name in the alias declaration. An alias of a signal denotes a signal; 
an alias of a variable denotes a variable; an alias of a constant denotes a constant.

An alias of an object can be updated if and only if the object itself can be updated. Thus, 
an alias for a constant or for a port of mode in cannot be updated.

An alias may be constrained to a sub-type of the object specified in name, but identifier 
and name must have the same base type.

Example:

signal Instrctn:std_logic_vector(15 downto 0);
alias Opcode:std_logic_vector(3 downto 0) is 

Instrctn(15 downto 12);
alias Op1:std_logic_vector(5 downto 0) is Instrctn(11 downto 6);
alias Op2:std_logic_vector(5 downto 0) is Instrctn(5 downto 0);
alias Sign1:std_logic is Op1(5);
alias Sign2:std_logic is Op2(5);

The first line of this example declares a signal called Instrctn, containing 16 bits. 
Succeeding lines define several aliases from sub-elements of this std_logic vector: two 
six-bit operands (Op1 and Op2) and two sign bits (Sign1 and Sign2). The alias 
declarations for Sign1 and Sign2 make use of previously declared aliases.

1.11.2 Architecture
An architecture (or, more formally, an "architecture body") describes the internal view of 
an entity, i.e., it specifies the functionality or the structure of the entity.

architecture name of entity is
architecture_declarations;
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begin

concurrent_statements;
end [name];

architecture_declaration ::=
subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_specification

concurrent_statement ::= 
process_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

Architectures describe the behavior, data flow, or structure of an accompanying entity. See 
Section 1.6 Entities for more information about entities.

Architectures start with the keyword architecture, followed by a name for the architecture 
being declared, the keyword of, the name of the entity to which the architecture is being 
bound, and the keyword is.

A list of architecture declarations follows. This list declares components, signals, types, 
constants, and attributes to be used in the architecture. If a USE clause appears before the 
architecture, any elements referenced by the USE clause need not be re-declared.

The architecture body follows, consisting of component instantiation statements, generate 
statements, processes, and/or concurrent signal assignment statements.

In practice, architectures in Warp perform one of the following functions:

• They describe the behavior of an entity. 

• They describe the data flow of an entity. 

• They describe the structure of an entity. 

Examples of each of these uses of an architecture are given in Section 1.5 Operators and 
Section 1.10 Additional Design Examples.

1.11.3 Attribute
An attribute is a property that can be associated with an entity, architecture, label, or signal 
in a VHDL description. This property, once associated with the entity, architecture, label, 
or signal, can be assigned a value, which can then be used in expressions.

1.11.3.1 Attribute Declaration
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attribute attribute-name:type;

1.11.3.2 Attribute Specification
attribute attribute-name 

of name-list:name-class is expression;

1.11.3.3 Attribute Reference
item-name’attribute-name

Attributes are constants associated with names. When working with attributes, it is helpful 
to remember the following order of operations: declare-specify-reference.

• Declare the attribute with an attribute declaration statement.

• Associate the attribute with a name and give the attribute a value with an attribute 
specification statement.

• Reference the value of the attribute in an expression.

VHDL contains pre-defined and user-defined attributes.

Pre-defined attributes are part of the definition of the language. Warp supports a subset of 
these attributes that relate to synthesis operations. This subset is discussed in Section 
1.11.4 Pre-Defined Attributes.

User-defined attributes are additional attributes that annotate VHDL models with 
information specific to the user’s application. Several user-defined attributes are supplied 
with Warp to support synthesis operations. 

1.11.3.4 Declaring New Attributes
To declare a new attribute, use an attribute declaration:

attribute smart is boolean;
attribute charm is range 1 to 10;

This example declares two attributes. The first is called smart, of type boolean. The 
second is called charm and has as possible values the integers 1 through 10, inclusive.

Associating Attributes With Names
To associate an attribute with a name and assign the attribute a value, use an attribute 
specification:

attribute smart of sig1:signal is true;
attribute charm of ent1:entity is 5;
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This example associates the attribute smart with signal sig1, and assigns smart a value of 
TRUE, then associates the attribute charm with entity ent1 and assigns charm a value of 
5.

Referencing Attribute Values
To use the value of an attribute in an expression, use an attribute reference:

if (sig1’smart = TRUE) then a <= 1 else a <= 0;

This example tests the value of the attribute smart for signal sig1, then assigns a value to 
signal a depending on the result of the test.

1.11.4 Pre-Defined Attributes
Warp supports a large set of pre-defined attributes, including value, function, type, and 
range attributes.

Table 1-6 lists the pre-defined attributes that Warp supports:

• Value attributes operate on items of scalar type or subtype.

• Function attributes operate on types, objects, or signals. 

• Type attributes operate on types.

• Range attributes operate on constrained (bounded) array types.

1.11.4.1 Value Attributes
All scalar types or subtypes have the following value attributes:

• ’LEFT: returns the leftmost value in the type declaration.

• ’RIGHT: returns the rightmost value in the type declaration.

• ’HIGH: returns the highest value in the type declaration. For enumerated types, this is 
the rightmost value. For integer sub-range types, this is the value of the highest integer 
in the range. For other sub-range types, this is the rightmost value if the type 
declaration uses the keyword "to" or the leftmost value if the type declaration uses the 
keyword "downto".

• ’LOW: returns the lowest value in the type declaration. For enumerated types, this is 
the leftmost value. For integer sub-range types, this is the value of the lowest integer in 
the range. For other sub-range types, this is the leftmost value if the type declaration 
uses the keyword "to" or is the rightmost value if the type declaration uses the keyword 
"downto". Constrained array types have the following value attribute:
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• ’LENGTH(N): returns the number of elements in the N’th dimension of the array.

Constrained array objects also use these same attributes. For objects, the attributes are 
implemented in VHDL as functions instead of value attributes.

Table 1-6  Pre-defined Attributes Supported by Warp

Types Pre-defined Attributes

Value Attributes ’Left, ’Right, ’High, ’Low, ’Length

Function Attributes 
(types) ’Pos, ’Val, ’Succ, ’Pred, ’Leftof, ’Rightof

Function Attributes 
(objects) ’Left, ’Right, ’High, ’Low, ’Length

Function Attributes 
(signals) ’Event

Type Attributes ’Base

Range Attributes ’Range, ’Reverse_range
Warp HDL Reference Manual 95



VHDL

1

Examples:
For the following type declarations:
type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN,FEB,MAR,APR,MAY,JUN,

 JUL,AUG,SEP,OCT,NOV,DEC);
type Q1 is months range MAR downto JAN;

The value attributes are:
countup’left = 0 countdown’left = 10
countup’right = 10 countdown’right = 0
countup’low = 0 countdown’low = 0
countup’high = 10 countdown’high = 10
countup’length = 11 countdown’length = 11

months’left = JAN Q1’left = MAR
months’right = DEC Q1’right = JAN
months’low = JAN Q1’low = JAN
months’high = DEC Q1’high = MAR
months’length = 12 Q1’length = 3

1.11.4.2 Function Attributes (Types)
All discrete ("ordered") types and their subtypes have the following function attributes:
• ’POS(V): returns the position number of the value V in the list of values in the 

declaration of the type.
• ’VAL(P): returns the value that corresponds to position P in the list of values in the 

declaration of the type.
• ’SUCC(V): returns the value whose position is one larger than that of value V in the 

list of values in the declaration of the type.
• ’PRED(V): returns the value whose position is one smaller than that of value V in the 

list of values in the declaration of the type.
• ’LEFTOF(V): returns the value whose position is immediately to the left of that of 

value V in the list of values in the declaration of the type. For integer and enumerated 
types, this is the same as ’PRED(V). For sub-range types, this is the same as 
’PRED(V) if the type was declared using the keyword "to"; it is the same as ’SUCC(V) 
if the type was declared using the keyword "downto".

• ’RIGHTOF(V): returns the value whose position is immediately to the right of that of 
value V in the list of values in the declaration of the type. For integer and enumerated 
types, this is the same as ’SUCC(V). For sub-range types, this is the same as 
’SUCC(V) if the type was declared using the keyword "to"; it is the same as ’PRED(V) 
if the type was declared using the keyword "downto".
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Examples:

For the following type declarations (the same as those used in the previous example set):

type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN,FEB,MAR,APR,MAY,JUN,

 JUL,AUG,SEP,OCT,NOV,DEC);
type Q1 is months range MAR downto JAN;

the function attributes are:

countup’POS(0) = 0 countdown’POS(10) = 0
countup’POS(10) = 10 countdown’POS(0) = 10
countup’VAL(1) = 1 countdown’VAL(1) = 9
countup’VAL(9) = 9 countdown’VAL(9) = 1
countup’SUCC(4) = 5 countdown’SUCC(4) = 3
countup’PRED(4) = 3 countdown’PRED(4) = 5
countup’LEFTOF(4) = 3 countdown’LEFTOF(4) = 5
countup’RIGHTOF(4) = 5 countdown’RIGHTOF(4) = 3

months’POS(JAN) = 1 Q1’POS(JAN) = 1
months’POS(DEC) = 12 Q1’POS(MAR) = 3
months’VAL(1) = JAN Q1’VAL(1) = MAR
months’VAL(12) = DEC Q1’VAL(12) = error
months’SUCC(FEB) = MAR Q1’SUCC(FEB) = MAR
months’PRED(FEB) = JAN Q1’PRED(FEB) = JAN
months’LEFTOF(FEB) = JAN Q1’LEFTOF(FEB) = MAR
months’RIGHTOF(FEB) = MAR Q1’RIGHTOF(FEB) = JAN

1.11.4.3 Function Attributes (Objects)
All constrained (i.e., bounded) array objects have the following function attributes:

• ’LEFT(N): returns the left bound of the Nth dimension of the array object.

• ’RIGHT(N): returns the right bound of the Nth dimension of the array object.

• ’LOW(N): returns the lower bound of the Nth dimension of the array object. This is 
the same as ’LEFT(N) for ascending ranges, ’RIGHT(N) for descending ranges.

• ’HIGH(N): returns the upper bound of the Nth dimension of the array object. This is 
the same as ’RIGHT(N) for ascending ranges, ’LEFT(N) for ascending ranges.

In the discussion above, the value of N defaults to 1, which is also the lower bound for the 
number of dimensions in an array.

Examples:
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For the following type and variable declarations:

type two_d_array is array (8 downto 0, 0 to 4);
variable my_array:two_d_array;

the function attributes are:

my_array’left(1)= 8 my_array’left(2) = 0
my_array’right(1) = 0 my_array’right(2) = 4
my_array’low(1) = 0 my_array’low(2) = 0
my_array’high(1) = 8 my_array’high(2) = 4

1.11.4.4 Function Attributes (Signals)
Warp supports a single function attribute for signals, namely the ’EVENT attribute. 
’EVENT is a boolean function that returns TRUE if an event (i.e., change of value) has 
just occurred on the signal.

Warp supports the ’EVENT attribute only for clock signals such as in this example.

Example:

PROCESS BEGIN
WAIT UNTIL (clk’EVENT AND clk=’1’);
.
.
.

END PROCESS;

This example shows a process whose statements are executed when an event occurs on 
signal clk and signal clk goes to ’1’.
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Type Attributes
All types and subtypes have the following attribute:

• ’BASE: returns the base type of the original type or subtype.

At first glance, this attribute does not appear very useful in expressions, since it returns a 
type. But it can be used in conjunction with other attributes, as in the following examples.

Examples:

For the following type declarations:

type day_of_week is (SUN,MON,TUE,WED,THU,FRI,SAT);
subtype work_day is day_of_week range MON to FRI;

the following value attributes are true:

work_day’left = MON work_day’BASE’left = SUN
work_day’right = FRI work_day’BASE’right = SAT
work_day’low = MON work_day’BASE’low = SUN
work_day’high = FRI work_day’BASE’high = SAT
work_day’length = 5 work_day’BASE’length = 7

Range Attributes
Constrained array objects have the following attributes:

• ’RANGE(N): returns the range of the Nth index of the array. If N is not specified, it 
defaults to 1.

• ’REVERSE_RANGE(N): returns the reversed range of the Nth index of the array. If N 
is not specified, it defaults to 1.

The range attributes give the user a way to parameterize the limits of FOR loops and FOR-
GENERATE statements, as in the following example.

Example:

Consider a variable declared as:
variable my_bus:std_logic_vector(0 to 7);

Then, the value of the ’RANGE and ’REVERSE_RANGE attributes for my_bus are:
my_bus’RANGE = 0 to 7
my_bus’REVERSE_RANGE = 7 downto 0
You could use this attribute in a FOR loop, like this:
for index in my_bus’REVERSE_RANGE loop
.
end loop;
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 1.11.5 CASE
The CASE statement selects one or more statements to be executed within a process, 
based on the value of an expression.

case expression is
when case1 [| case2...] =>

sequence_of_statements;
when case3 [| case4...] =>

sequence_of_statements;
.
.
.]

[when others =>
sequence_of_statements;]

end case;

In Warp, the expression that determines the branching path of the CASE statement must 
evaluate to a vector or to a discrete type (i.e., a type with a finite number of possible 
values, such as an enumerated type or an integer type).

The vertical bar ('|') operator may be used to indicate multiple cases to be checked in a 
single WHEN clause. This may only be used if the sequence of statements following the 
WHEN clause is the same for both cases.

The keyword OTHERS may be used to specify a sequence of statements to be executed if 
no other case statement alternative applies. Because CASE statements execute 
sequentially, the test for OTHERS should be the last test in the WHEN list.

When Warp synthesizes a CASE statement, it synthesizes a memory element for the 
condition being tested (in order to maintain any outputs at their previous values) unless 
one of the following conditions occurs:

• All outputs within the body of the CASE statement are previously assigned a default 
value within the process.

• The CASE statement completely specifies the design's behavior following any 
possible result of the conditional test. The best way to ensure complete specification of 
design behavior is to include an OTHERS clause within the CASE statement.

When a signal/variable is not assigned in all the branches of the CASE statement, Warp 
may have to create memory elements for such signals/variables. 

Therefore, to use the fewest possible resources during synthesis, either assign default 
values to outputs in a process or make sure all CASE statements include an OTHERS 
clause.
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Example:

In the following example, signal s is declared as

s :in std_logic_vector(0 to 2);

In addition, i and o are declared as eight-element vectors:

i : in std_logic_vector(0 to 7);
o : out std_logic_vector(0 to 7);

The architecture follows:

architecture demo of Barrel_shifter is
begin process (s, i)

begin
case s is

WHEN "000"=> 
o <= i;

WHEN "001"=> 
o <=(i(1),i(2),i(3),i(4),i(5),i(6),i(7),i(0));

WHEN "010"=> 
o <=(i(2),i(3),i(4),i(5),i(6),i(7),i(0),i(1));

WHEN "011"=>
o <=(i(3),i(4),i(5),i(6),i(7),i(0),i(1),i(2));

WHEN "100"=> 
o <=(i(4),i(5),i(6),i(7),i(0),i(1),i(2),i(3));

WHEN "101"=> 
o <=(i(5),i(6),i(7),i(0),i(1),i(2),i(3),i(4));

WHEN "110"=> 
o <=(i(6),i(7),i(0),i(1),i(2),i(3),i(4),i(5));

WHEN "111"=> 
o <=(i(7),i(0),i(1),i(2),i(3),i(4),i(5),i(6));

end case;
end process;

end demo;

In this example, signal s evaluates to a 3- element bit-string literal. The appropriate 
statement is executed, depending on the value of s, and output vector o gets the value 
given by the specified ordering of elements in input vector i. Note that the CASE 
statement completely specifies the results of the conditional test; all possible values of s 
are covered by a WHEN clause. Hence, no OTHERS clause is needed.

1.11.6 Component
A component declaration specifies a component to be synthesized and lists the local signal 
names of the component. The component declaration serves the same purpose in VHDL as 
a function declaration or prototype serves in the C programming language. Ports and 
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Generics in the component declaration must match with those in the entity declaration.

Component Declaration
component identifier

[generic (generic_list);]
[port (port_list);]
end component;

Example:

component barrel_shifter port(
clk : IN std_logic;
s :in std_logic_vector(0 to 2);
insig :in std_logic_vector(0 to 7);
outsig :out std_logic_vector(0 to 7));

end component;

This example declares a component called barrel_shifter with a 3-bit input signal, an 8-bit 
input signal, and an 8-bit output signal.

Component Instantiation
instantiation_label:component_name

[generic generic_mapping]
[port port_mapping];

A component instantiation creates an instance of a component that was previously 
declared with a component declaration statement. Think of component instantiation as 
"placing" a previously declared component into an architecture, then "wiring" the newly 
placed component into the design by means of the generic map or port map.

Example:

a1:barrel_shifter
port map(

clk=>clock,
s(0)=>s0,
s(1)=>s1,
s(2)=>s2,
insig=>myinput,
outsig=>myoutput);

The line a1:barrel_shifter in the example above instantiates a component named a1 of 
type barrel-shifter. The port map statement that follows maps each signal from this 
instance of barrel_shifter to signals at a higher level. 

Note that, in this case, the barrel_shifter was defined as accepting a single bit signal clk, 
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and three vectors s, insig and outsig. For vectored signals, you can either split the vector 
up into individual signals, as in the case of s or perform direct vector to vector 
connections.

Note also the direction of the "arrow" in each mapping: from the "formal" (the signal 
name on the component) to the "actual" (the name of the pin to which the signal is being 
mapped).

1.11.7 Constant
A constant is an object whose value may not be changed.

constant identifier_list:type[:=expression];

Example:

TYPE stvar is std_logic_vector(0 to 1);
constant s0:stvar := "00";
constant s1:stvar := "01";
constant s2:stvar := "10";
constant s3:stvar := "11";

This example declares a vector subtype with length 2, called stvar. It then defines four 
constants of type stvar, and gives them values of "00", "01", "10", and "11", respectively.

subtype vec8 is std_logic_vector(0 to 7);
type v8_table is array(0 to 7) of vec8;
constant xtbL1:v8_table := (
"00000001",
"00000010",
"00000100",
"00001000",
"00010000",
"00100000",
"01000000",
"10000000");

This example declares a vector subtype with length 8 called vec8, a 1-dimensional array 
type of vec8 called v8_table with eight elements, and a constant of type v8_table called 
xtbL1. 

Values are assigned to the constant by concatenating a sequence of string literals (e.g., 
"00000001") into vector form. Only characters ’0’, ’1’, ’Z’ and ’-’ are allowed in these 
string literals, but the values could have been written in hex format (e.g., x"01" is the same 
as "00000001" for this purpose). The result is a table of constants such that xtbL1(0) is 
"00000001" and xtbL1(7) is "10000000".
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 1.11.8 Entity
An entity declaration names a design entity and lists its ports (i.e., external signals). The 
mode and data type of each port are also declared. 

entity identifier is port(
port_name: mode type [;
port_name: mode type...])
end [identifier];

Choices for mode are IN, OUT, BUFFER, and INOUT.

Example:

entity Barrel_Shifter is port(
clk : IN std_logic;
s :in std_logic_vector(0 to 2);
insig :in std_logic_vector(0 to 7);
outsig :out std_logic_vector(0 to 7));

end Barrel_Shifter;

This example declares an entity called barrel_shifter with a 3-bit and an 8-bit input signal 
as well as an 8-bit output signal.

1.11.9 Exit
The EXIT statement causes a loop to be exited. Execution resumes with the first statement 
after the loop. The conditional form of the statement causes the loop to be exited when a 
specified condition is met.

exit [loop_label] [when condition];
Example:

i <= 0;
loop

outsig(i)<=barrel_mux8(i,s,insig);
i <= i+1;
exit when i>7;
end loop;

The EXIT statement in the example above causes the loop to exit when variable i becomes 
greater than 7. The example thus calls the function barrel_mux8 eight times.

1.11.10 Generate
Generate statements specify a repetitive or conditional execution of the set of concurrent 
statements they contain. Generate statements are especially useful for instantiating an 
array of components.
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label:generation_scheme generate

{concurrent_statement}
end generate [label];

generation_scheme ::= 
for generate_parameter_specification

| if condition

A "generation scheme" in the syntax above refers to either a FOR-loop specification or an 
IF-condition specification, as shown in the example below.

Example:

architecture test of serreg is
signal zero : std_logic := ’0’ ;

begin
m1: for i in 0 to size-1 generate

m2: if i=0 generate
x1:dsrff port map (si, zero, mreset, clk, q(0));

end generate;
m3: If i>0 generate

x2:dsrff port map(q(I-1), zero, mreset, clk, q(I));
end generate;

end generate;
end test;

The example above instantiates a single component labeled x1, and size-1 components 
labeled x2. For size=3, for instance, the code shown above is the equivalent of

architecture test of serreg is
signal zero : std_logic := ’0’ ;

begin
x1:dsrff port map(si, zero, mreset, clk, q(0));
x2:dsrff port map(q(0), zero, mreset, clk, q(1));
x3:dsrff port map(q(1), zero, mreset, clk, q(2));

end test;
1.11.11 Generic

Generics are the means by which instantiating (parent) components pass information to 
instantiated (child) components in VHDL. Typical uses are to specify the size of array 
objects or the number of subcomponents to be instantiated.

generic(identifier:type[:=value]);

Example:

component serreg 
generic (size:integer:=8);
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port (si,

clk,
mreset : in std_logic;
q : inout std_logic_vector(0 to size-1));

end component;
This example declares a component with a bidirectional array of 8 bits, among other 
signals. The number of bits is given by the value of the size parameter in the generic 
statement.

1.11.12 If-Then-Else
The IF statement selects one or more statements to be executed within a process, based on 
the value of a condition. 

IF condition THEN sequence_of_statements
[ELSIF condition THEN 

sequence_of_statements...]
[ELSE sequence_of_statements]

END IF;

A condition is a boolean expression, i.e., an expression that resolves to a boolean value. If 
the condition evaluates to true, the sequence of statements following the THEN keyword 
is executed. If the condition evaluates to false, the sequence of statements following the 
ELSIF or ELSE keyword(s), if present, are executed.

When Warp synthesizes an IF-THEN-ELSE statement, it synthesizes a memory element 
for the condition being tested (in order to maintain any outputs at their "previous" values) 
unless one of the following conditions is true:

• All outputs within the body of the IF-THEN-ELSE statement are previously assigned a 
"default" value within the process.

• The IF-THEN-ELSE statement specifies the design's behavior following any possible 
result of the conditional test. The best way to ensure complete specification of design 
behavior is to include an ELSE clause within the IF statement.

When a signal/variable is not assigned in all the branches of the IF-THEN-ELSE 
statement, Warp may have to create memory elements for such signals/variables. This 
could use up more PLD resources than would otherwise be required. 

In short, to use the fewest possible PLD resources during synthesis, either assign default 
values to outputs in a process, or make sure all IF-THEN-ELSE statements include ELSE 
clauses.

Example:

if (not tmshort=one)then stvar <= ewgo;
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elsif (tmlong=one)then stvar <= ewwait;
elsif (not ew=one AND ns=one)then stvar<=ewgo;
elsif (ew=one AND ns=one)then stvar <= ewwait;
elsif (not ew=one)then stvar <= ewgo;
else stvar <= ewwait;
end if;

Note – In the case above, the ELSE statement is to be left out, as 
opposed to suggestions made on the previous page.

The example above sets a state variable called stvar. The value that stvar receives 
depends on the value of variables tmshort, tmlong, ew, and ns.
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 Asynchronous Sets, Resets, Loads
Use an IF-THEN-ELSE statement to synthesize the operation of a synchronous circuit 
containing asynchronous sets or resets.

To do so, use a sensitivity list in the PROCESS statement, naming the sets, resets, and 
clock signals that will trigger the execution of the process. Then, use a sequence of IF-
ELSIF clauses to specify the behavior of the circuit.

The structure of the process should be something like this:

process (set, reset, clk) begin
if (reset = ’0’)then

--assign signals to their "reset" values;
elsif (set = ’0’)then

--assign signals to their "set" values;
elsif (load = ’1’)then

assign signals an aysnchronous load value;
elsif (clk’EVENT AND clk=’1’)then

--perform synchronous operations;
end if;

end process;

The example above shows the VHDL description for active-low set and reset signals. It 
could just as easily have been coded for active-high sets and resets by using the conditions 
set=’1’ and reset=’1’.

The assignments made in the statements that follow the set or reset signal conditions must 
be "simple" assignments (i.e., of the form name=constant), to a signal of type std_logic, 
std_logic_vector, or enumerated type (for state variables). If the value being assigned is a 
non-constant, it is treated as an asynchronous load.

1.11.13 Library
In Warp, a library is a storage facility for previously analyzed design units.

library library-name [, library-name];

A library clause declares logical names to make libraries visible within a design unit. A 
design unit is an entity declaration, a package declaration, an architecture body, or a 
package body.

Example:

library mylib;

The above example makes a library named mylib visible within the design unit containing 
the library clause.
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1.11.14 Loops
Loops execute a sequence of statements repeatedly.

[loop_label:] [iteration_scheme] loop
sequence_of_statements
end loop [loop_label];

iteration_scheme ::= 
while condition
| for loop_parameter in 

{lower_limit to upper_limit 
|upper_limit downto lower_limit}

There are three kinds of loops in VHDL: 

• Simple loops are bounded by a loop/end loop statement pair. These kinds of loops 
require an exit statement, otherwise they execute forever; 

• FOR loops execute a specified number of times; and 

• WHILE loops execute while a specified condition remains true.

Examples:
Simple loop:

i := 0;
loop

outsig(i)<=barrel_mux8(i,s,insig);
i := i+1;
if (i>7) then 

exit; 
END IF;

end loop;

FOR loop:
for i in 0 to 7 loop

outsig(i)<=barrel_mux8(i,s,insig);
end loop;

WHILE loop:
i := 0;
while (i<=7) loop

outsig(i)<=barrel_mux8(i,s,insig);
i := i+1;
end loop;

The examples above show three ways of implementing the same loop. All of these loops 
call the function barrel_mux8 eight times. (In all three, i must be defined as a variable.)
Warp HDL Reference Manual 109



VHDL

1
 1.11.15 Next
NEXT advances control to the next iteration of a loop.

next [loop_label] [when condition];

Example:

for i in 0 to 7 loop
if ((i =0) or (i=2) or (i=4) or (i=6)) then

outsig(i)<=barrel_mux8(i,s,insig)
else

next i;
end if;

end loop;

The example above performs an operation on the even-numbered bits of an 8-element 
std_logic_vector. It uses a NEXT statement to advance to the next iteration of the loop for 
the odd-numbered bits.

1.11.16 Package
A VHDL package is a collection of declarations that can be used by other VHDL 
descriptions. A VHDL package consists of two parts: the package declaration and the 
package body.

Package Declaration
package identifier is

function_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| use_clause
[;{function_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| use_clause}...]
end [identifier];
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Package Body
package body identifier is

{function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| use_clause}
[;{function_declaration
| function_body
| type_declaration
| subtype_declaration
| constant_declaration
| use_clause}...]
end [identifier];

The package declaration declares parts of the package that can be used by other VHDL 
descriptions, i.e., by other designs that use the package.

The package body provides definitions and additional declarations, as necessary, for 
functions whose interfaces are declared in the package declaration.

Example: (package declaration)

package bv_tbl is
subtype vec8 is std_logic_vector(0 to 7);
type v8_table is array(0 to 7) of vec8;

-- defining vectors for i2bv8 function
constant xtbl1:v8_table := (
"00000001",
"00000010",
"00000100",
"00001000",
"00010000",
"00100000",
"01000000", 
"10000000");
-- function declaration
function i2bv8(ia:integer) return vec8;
subtype vec3 is std_logic_vector(0 to 2);
type v3_table is array(0 to 7) of vec3;

-- defining vectors for i2bv3 function
constant xtbl2:v3_table := (
"000",
"001",
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"010",
"011",
"100",
"101",
"110",
"111"
);

--function declaration
function i2bv3(ia:integer) return vec3;

end bv_tbl;

The example above declares several types, subtypes, constants, and functions. These items 
become available for use by any VHDL description that uses package bv_tbl.

Example: (package body)

package body bv_tbl is

function i2bv8(ia:integer) return vec8 is
-- translates an integer between 1 and 8
-- to an 8-bit vector
begin
return xtbl1(ia);
end i2bv8;

function i2bv3(ia:integer) return vec3 is
-- translates an integer between 1 and 8
-- to a three-bit vector
begin

return xtbl2(ia);
end i2bv3;

end bv_tbl;

The example above defines two functions whose declarations appeared in the package 
declaration example, shown previously.

1.11.17 Port Map
A port map statement associates the ports of a component with the pins of a physical part.

port map ([formal_name =>] actual_name
[,[formal_name =>] actual_name]);

The port map statement associates ports declared in a component declaration, known as 
formals, with the signals (known as actuals) being passed to those ports.
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If the signals are presented in the same order as the formals are declared, then the formals 
need not be included in the port map statement.

Port map statements are used within component instantiation statements. See Section 
1.11.6 Component, for more information about component instantiation statements.

Example:

and_1: AND2
port map(A => empty_1,

B => empty_2,
Q => refill_bin);

The example above instantiates a two-input AND gate. The port map statement associates 
three signals (empty_1, empty_2, and refill_bin, respectively) with ports A, B, and Q of 
the AND gate.

If the three ports appear in the order A, B, and Q in the AND2 component declaration, the 
following (shorter) component instantiation would have the same effect:

and_1: AND2
port map(empty_1,empty_2,refill_bin);

Cypress recommends, however, using the name association method instead of positional 
association for both port maps and generic maps. In general, name association is a lot 
more readable, less error prone, and insulates the code from changes to lower level 
components to a certain extent.

1.11.18 Generic Map
A generic map statement associates the generics of a component with the values defined at 
an upper level architecture.

generic map ([formal_name =>] actual_name
[,[formal_name =>] actual_name]);

The generic map statement associates generics declared in a component declaration, 
known as formals, with the values (known as actuals) being passed to those generics.

If the values are being passed in the same order as the formals declared, then the formals 
need not be specified in the generic map.

Generic map statements are used within component instantiation statements. See Section 
1.11.6 Component for more information about component instantiation statements.

When using association pairs (formals being specified in the generic map), the user can 
omit the specification of certain generics if those generics have defaults defined for them 
in the component declaration.
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Example:

u0: MADD_SUB
generic map(lpm_width => myOutput’length,

lpm_representation => lpm_unsigned,
lpm_direction => lpm_add,
lpm_hint => speed) ;

port map(dataA => myDataA, dataB => myDataB, 
cin => zero, add_sub => one,
result => myOutput, cout => open,
overflow => open) ;

This example instantiates an add/sub component defined in the LPM library supplied with 
Warp. In the instantiation, the Madd_sub LPM modules is being configured as an adder 
only without a carry-in. The carry-out or the overflow outputs are not being used.

Since the Madd_sub moduled defined in the LPM library provided a default for lpm_hint 
(speed), this association could have been omitted in the generic map. The very first 
generic lpm_width has no default value, however, and must be specified. The choice of 
what can be omitted and what has to be defined depends on the component declaration.
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Using positional association, the same example could have been written as

u0: MADD_SUB
generic map(myOutput’length, lpm_unsigned,

lpm_add, speed) ;
port map(myDataA,myDataB, zero, one,

myOutput, open, open) ;

Cypress recommends using the name association method instead of positional association 
for both port maps and generic maps. In general, name association is a lot more readable, 
less error prone, and insulates the code from changes to lower level components to a 
certain extent.

1.11.19 Process
A process statement is a concurrent statement that defines a behavior to be executed when 
that process becomes active. The behavior is specified by a series of sequential statements 
executed within the process.

[label:] process [(sensitivity_list)]
[process_declarative_part]
begin

sequential_statement
[;sequential_statement...];

end process [label];

process_declarative_part ::=
function_declaration
| function_body
| type declaration
| subtype declaration
| constant declaration
| variable declaration
| attribute specification

sequential_statement ::=
wait_statement
| signal_assignment_statement
| variable_assignment_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement
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A process which is executing is said to be active; otherwise, the process is said to be 
suspended. Every process in the VHDL description may be active at any time. All active 
processes are executed concurrently with respect to simulation time.

Processes can be activated in one of two ways: by means of a WAIT statement or by 
means of a sensitivity list (a list of signals enclosed in parentheses appearing after the 
process keyword).

When a process includes a WAIT statement, the process becomes active when the value of 
the clock signal goes to the appropriate value (’0’ or ’1’).

When a process includes a sensitivity list, the process becomes active when one or more of 
the signals in the list changes value.

Example:

process (s, insig) begin
for i in 0 to 7 loop

outsig(i)<=barrel_mux8(i,s,insig);
end loop;

end process;

The example above shows a process that executes whenever activity is sensed on either of 
two signals, s or insig.

1.11.20 Signal
A signal is a pathway along which information passes from one component in a VHDL 
description to another. Signals are also used within components to pass values to other 
signals, or to hold values.

Signal Declaration
signal name [, name ...]:type;

Signal Assignment)
signal_name <= expression 

[when condition [ else expression]];

Signals must be declared before they can be used. Declaring a signal gives it a name and a 
type. Signal declarations often appear as part of port or component declarations.

To assign a value to a signal, replace its current value with the value of some expression of 
the same type as the signal, using the signal name and the "<=" operator.
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The user may also specify a condition under which the replacement is to be made, as well 
as an alternative value for the signal if the condition is not met. This form of the signal 
assignment statement uses the "when" and "else" keywords.

Example:

(Signal Declaration examples)

signal c0,c1,cin1,cin2:std_logic;

This example declares four signals (c0, c1, cin1, and cin2), each of type std_logic.

type State is (s1, s2, s3, s4, s5);
signal StVar : State;

This example declares an enumerated type named State, with five possible values. It then 
declares a signal named StVar of type State. Thus, StVar can have values s1, s2, s3, s4, 
or s5.

(Unconditional Signal Assignment examples)

c_in <= '1';

This example sets a variable of type std_logic named c_in to ’1’.

StVar <= s1;

This example assigns the value s1 to a signal named StVar. Presumably, StVar is a signal 
of some enumerated type, having s1 as one of its possible values.

(Conditional Signal Assignment example)

c_in2 <= '1' when (stvar=s1) OR (stvar=s2) else '0';

The above example illustrates the use of conditional signal assignment. Signal c_in2 is 
assigned one value if the specified conditions are met; otherwise, it is assigned a different 
value.

1.11.21 Subprograms
Subprograms are sequences of declarations and statements that can be invoked repeatedly 
from different parts of a VHDL description. VHDL includes two kinds of subprograms: 
procedures and functions.

Procedure Declaration
procedure designator [(formal-parameter-list)];
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 Procedure Body
procedure designator [(formal-parameter-list)] is

[declarations]
begin

{sequential-statement;}
end [designator];

Function Declaration
function designator [(formal-parameter-list)]

return type_mark;
type_mark ::= type_name | subtype_name

Function Body
function designator [(formal-parameter-list)] 

return type_mark is
[declarations]

begin
{sequential-statement;}

end [designator];

A subprogram is a set of declarations and statements that can be used repeatedly from 
many points within a VHDL description. 

There are two kinds of subprograms in VHDL: procedures and functions. Procedures may 
return zero or more values. Functions always return a single value. In practice, procedures 
are most often used to sub-divide a large behavioral description into smaller, more 
modular sections. Functions are most often used to convert objects from one data type to 
another or to perform frequently needed computations.

VHDL allows the user to declare a subprogram in one part of a VHDL description while 
defining it in another. Subprogram declarations contain only interface information: name 
of the subprogram, interface signals, and return type (for functions). The subprogram body 
contains local declarations and statements, in addition to the interface information.

Function calls are expressions; the result of a function call is always assigned to a signal or 
variable, or otherwise used in a larger statement (e.g., as a parameter to be passed to a 
procedure call). Procedure invocations, by contrast, are entire statements in themselves.

In both procedures and functions, actual and formal parameters may use positional 
association or named association. 

To use positional association, list the parameters to be passed to the subprogram in the 
same order that the parameters were declared, without naming the parameters.

To use named association, give the formal parameter (the name shown in the subprogram 
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declaration) and the actual parameter (the name passing to the subprogram) within the 
procedure invocation or function call, linking the formal and actual parameters with the 
"=>" operator. In named association, parameters can be listed in any order.

Example:

Consider a procedure, whose declaration is shown below, that takes three signals of type 
std_logic as input parameters:

procedure crunch(signal sig1,sig2,sig3:in std_logic);

Then, the invocation

crunch(trex,raptor,spitter);

uses positional association to map signal trex to sig1, signal raptor to sig2, and signal 
spitter to sig3. You could use named association in the following procedure invocation, 
however, and get the same result:

crunch(sig2=>raptor,sig3=>spitter,sig1=>trex);

Procedures and functions are described in the next sections.

1.11.21.1 Procedures
Procedures describe sequential algorithms that may return zero or more values. 
Procedures are most frequently used to decompose large behavioral descriptions into 
smaller, more modular sections, which can be used by many processes.

Procedure parameters may be constants, variables, or signals, and their modes may be in, 
out, or inout. Unless otherwise specified, a parameter is by default a constant if it is of 
mode in, and a variable if it is of mode out or inout.

In general, procedures can be used both concurrently (outside of any process) and 
sequentially (inside a process). If any of the procedure parameters are variables, the 
procedure can only be used sequentially, as variables are only defined inside a process. 
Variables declared inside a procedure cease to exist when the procedure terminates.

A procedure body can contain a wait statement, while a function body cannot; however, a 
process that calls a procedure with a wait statement in it cannot have a sensitivity list. 
Processes can not be sensitive to signals and made to wait simultaneously. 

1.11.21.2 Functions
Functions describe sequential algorithms that return a single value. Their most frequent 
uses are: (1) to convert objects from one data type to another; and (2) as shortcuts to 
perform frequently used computations.
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Function parameters must be of mode in and must be signals or constants. If no mode is 
specified for a function parameter, the parameter is interpreted as having mode in.

A function body cannot contain a wait statement. (Functions are only used to compute 
values that are available instantaneously.) 

Any variables declared inside a function cease to exist when the function terminates (i.e., 
returns its value).

One common use of functions in VHDL is to convert objects from one data type to 
another. Warp provides several conversion functions in the various packages for type 
conversions (integer to vector, vector to integer etc.). Functions can also be used to 
overload operators or perform simple combinatorial functions.

Example:

function count_ones(vec1:std_logic_vector)
return integer is

-- returns the number of ’1’ bits in a std_logic vector
variable temp:integer:=0;
begin

for i in vec1’low to vec1’high loop
if vec1(i) = ’1’ then

temp := temp+1;
end if;

end loop;
return temp;

end count_ones;

This function counts the number of ’1’s in a vector.

1.11.22 Type
In VHDL, objects are anything that can hold a value. Signals, constants, or variables are 
common objects. All VHDL objects have a type, which specifies the kind of values that 
the object can hold.

Enumerated Type Declaration
type name is (value [,value...]);

Subtype Declaration
subtype name is base_type

[range {lower_limit to upper_limit 
| upper_limit downto lower_limit}];
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Vector Declaration
subtype name is std_logic_vector

 (lower_limit to upper_limit 
| upper_limit downto lower_limit);

Record Declaration
type name is record
 name:type;

[name : type;...]
end record;

Warp has the following pre-defined types:

• integer: VHDL allows each implementation to specify the range of the integer type 
differently, but the range must extend from at least -(2**31-1) to +(2**31-1), or -
2147483647 to +2147483647. Only variables (not signals) can have type integer.

• boolean: an enumerated type, consisting of the values "true" and "false";

• std_logic: an enumerated type, consisting of the values '0','1', ’Z’, ’-’. std_logic in its 
strictest definition also has values of ’H’, ’L’, ’U’, ’X’ and ’W’ which should not be 
used in VHDL that is intended for synthesis.

• character: an enumerated type, consisting of one literal for each of the 128 ASCII 
characters. The non-printable characters are represented by two or three-character 
identifiers, as follows: NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, 
VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN,EM, SUB, 
ESC, FSP, GSP, RSP, and USP.

• VHDL objects can take other, user-defined, types as well. Possibilities include:

• enumerated types: This type has values specified by the user. A common example is a 
state variable type, where the state variable can have values labeled state1, state2, 
state3, etc.

• sub-range types: This type limits the range of a larger base type (such as integers) to a 
smaller set of values. Examples would be positive integers, or non-negative integers 
from 0 to 100, or printable ASCII characters.

• arrays (especially vectors): This type specifies a collection of elements of a single base 
type. A commonly used example is the std_logic_vector type, declared in the 
std_logic_1164 package from IEEE, which denotes an array of std_logic bits.

• records: This type specifies a collection of elements of possibly differing types.
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 Enumerated Type Declaration Example
type sigstates is (nsgo, nswait, nswait2,
 nsdelay, ewgo, ewwait, ewwait2, ewdelay);

This example declares an enumerated type and lists eight possible values for it.

Sub-range Type Declaration Example
type column is range (1 to 80);type row is 

range (1 to 24);

These examples declare two new sub-range integer types, column and row. Legal values 
for objects of type column are integers from 1 to 80, inclusive. Legal values for objects of 
type row are integers from 1 to 24, inclusive.

Vector Type Declaration Example
subtype vec8 is std_logic_vector(0 to 7);
signal insig, outsig : vec8;
.
.
insig <= "00000010";
.
.
outsig<=insig(2 to 7) & insig(0 to 1);

This example declares a vector type called vec8. It then declares two signals of type vec8, 
insig and outsig. The signal assignment statement that concludes the example left-shifts 
insig by two places. (Outsig then contains the value "00001000".)

Record Type Declaration Example
subtype vec5 is std_logic_vector(1 to 5);
-- define a record type containing a 5-bit vector
-- and a single bit
type arec is record

abc:vec5;
def:std_logic;
end record;

-- define a type containing
-- an array of five records
type twodim is array (1 to 5) of arec;
-- now define a couple of signals
signal v:twodim;
signal vrec:arec;
.
.
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-- in record 1 of v, set array field to all 0's
v(1).abc <= "00000"; 

-- in record 2 of v, set first three bits to 0's,
-- others to 1's
v(2).abc <= ('0', '0', '0', others => '1');

-- set fifth bit in array within record #5 to 0.
v(5).abc(5) <= '0';

-- set bit field within record to 1
vrec.def <= '1';

-- set 3rd bit within vrec's array to 1
vrec.abc(3) <= '1';

The example above defines a record type and a type consisting of an array of records. The 
example then demonstrates how to assign values to various elements of these arrays and 
records.

1.11.23 USE
The USE statement makes items declared in a package visible inside the current design 
unit. A design unit is an entity declaration, a package declaration, an architecture body, or 
a package body.

use name {, name};

Example:

use work.cypress.all;
use work.rtlpkg.all;
use work.brl4pkg.all;

The example above makes the items declared in the specified packages available for use in 
the design unit in which the use statements are contained.

Note – The scope of a USE statement extends only to the design unit 
(entity, architecture, or package) that it immediately precedes.

1.11.24 Variable
A variable is a VHDL object (similar to a signal) that can hold a value.
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 Variable declaration
variable name [, name ...]:type [:=expression];

Variable assignment
signal_name <= expression;

Variables differ from signals in that variables have no direct analogue in hardware. 
Instead, variables are simply used as indices or value-holders to perform the computations 
incidental to higher-level modeling of components.

Example:

function admod(i,j,max:integer) return integer is
variable c:integer;
begin
c:=(i+j) mod (max+1);
return c;
end admod;

The function in the example above declares a variable c as a value-holder for a 
computation, then uses it and returns its value in the body of the function.

1.11.25 Wait
The WAIT statement suspends execution of a process until the specified condition 
becomes true.

wait until [condition];
A WAIT statement, if used, must appear as the first sequential statement inside a process.

Example:

wait until clk='1';

The example above suspends execution of the process in which it is contained until the 
value of signal clk goes to ’1’.
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1.12 List of VHDL Reserved Words

The following list of reserved words should not be used for object (signals, variables, 
entities, or libraries) names.

In addition to the reserved words listed by the language, also avoid declaring objects 
(signals, variables, entities, or libraries) whose names can conflict with objects declared in 
Cypress supplied packages, such as those in the files 
$CYPRESS_DIR\lib\common\cypress.vhd or rtlpkg.vhd.

Table 1-7  VHDL Reserved Words

abs downto library postponed srl

access else linkage procedure subtype

after elsif literal process then

alias end loop pure to

all entity map range transport

and exit mod record type

architecture file nand register unaffected

array for new reject units

assert function next rem until

attribute generate nor report use

begin generic not return variable

block group null rol wait

body guarded of ror when

buffer if on select while

bus impure open severity with

case in or signal xnor

component inertial others shared xor

configuration inout out sla

constant is package sll

disconnect label port sra
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